S-Lang Library Intrinsic Function Reference (v2.3.0)

John E. Davis <www.jedsoft.org> Sep 14, 2014

ii

Preface

This document describes the intrinsic functions that are available to any application that embeds
the S-Lang interpreter. In addition, slsh defines a number of useful functions that are also available
to conforming S-Lang applications. Those functions are described in The SLSH Library Reference

iii

http://www.jedsoft.org/slang/docs/

iv

Contents

1 Data Types 1
1.1 Assoc_ Type 1
1.2 File Type 2
1.3 List Type 3
1.4 String Type 3
15 Struct Type e e 4

2 Array Functions 7
2.1 all ..o 7
2.2 ANy . . e e e e e e 8
23 array info. 8
24 array mMap e 9
2.5 array _TEeVETISE e e 10
2.6 array shape 11
2.7 array _sort. 11
2.8 array SWaPo e e e e e e e e e e 13
29 cumsum ... e e e e e 14
2.10 get default sort method 14
2.11 init char array L 15
212 dsmull ..o 15
213 length L e 16
2.14 mMaX e e e e e e e 16
2.15 maxabs e 17
2,16 MU . . .o e e e e 17
2.17 minabs L e e 18
218 reshape. e 18

vi CONTENTS
2.19 reshape L 19
2.20 set default sort method 20
221 SUIML .« . . L e e e e e e 20
222 SUMSQo e e e 20
2.23 transpose Lo L e e e e e 21
2.24 where e 21
2.25 wherediff L 22
2.26 wherefirst 23
2.27 wherefirstmaxo 24
2.28 wherefirstmin oL L 24
2.29 wherelast 24
2.30 wherelastmax e 25
2.31 wherelastmin 25
2.32 wherenot 26

3 Associative Array Functions 27
3.1 assoc _delete key L 27
3.2 assoc_get keys 27
3.3 assoc_get values L o 28
3.4 assoc_key exists L L 28

4 Functions that Operate on Strings 29
4.1 count char occurrences, 29
42 create delimited string., 29
43 extract _element 00 L o 30
44 glob to_regexp e 31
45 is list elemento L 32
46 is_substr 32
4.7 make printable string, 0 00000 33
4.8 Sprintfo 33
4.9 strbskipchar L 33
4.10 sprintf . ..o e 34
411 sscanfo 36
4.12 strbyteleno 37
4.13 strbytesub 38

CONTENTS vii

4.14 strecat L L e 38
4.15 strcharlen e 39
4.16 strchop oL 39
4.17 strchopr L e 40
418 stremp . . . L e e e e e 40
4.19 strcompresso e e e e e 41
420 string match L Lo 41
4.21 string match nth 000 000 0L 42
4.22 string matches. L Lo L Lo o 43
4.23 strjoin L e e e 43
4.24 strlen Lo 44
4.25 strlow L e 44
4.26 strnbytecmpo 45
4.27 strncharcmpo 45
428 strncmp Lo e e e e 46
4.29 strreplace 47
4.30 strskipbytes L. L 47
4.31 strskipchar L e 48
432 strsub L 49
4.33 strtok L e 50
4.34 strtrans Lo Lo e 51
4.35 strérimo e 52
4.36 strtrim_beg o 52
437 strtrim_end Lo 53
438 strup e e e e 53
4.39 str_delete chars 0 L 54
440 str _quote string L L 55
441 str_replace e 595
4.42 str uncomment string 00 0L 56
443 substr L e o7
4.44 substrbytes oL o7
5 Functions that Operate on Binary Strings 59

5.1 array to bstring 0 o oo 59

viii CONTENTS
5.2 bstring to array L 59
5.3 bstrcat 60
54 bstrjoin L e 60
5.5 bstrlen L e 60
5.6 count byte occurrences, 61
5.7 is_substrbytes Lo o 61
5.8 pack . . . e 62
59 pad pack format00 L 63
5.10 sizeof pack 64
511 unpacko 64

6 Functions that Manipulate Structures 65
6.1 add binary 65
6.2 add string 66
6.3 _ add typecast L 67
6.4 add _wunary e 67
6.5 get struct field o o oo o oo 68
6.6 get struct field mames. 00 00 68
6.7 _is struct type 69
6.8 is_struct type. 69
6.9 push struct field values. 70
6.10 set struct field o oo L oL 70
6.11 set struct fields 0 L 71

7 Functions that Create and Manipulate Lists 73
71 list_append 73
7.2 list concat 73
7.3 list delete. 74
74 list_imsert 74
75 list _joim 75
7.6 list mew 75
7.7 list pop L 75
7.8 list reverse 76
79 list to _array e 76

CONTENTS ix
8 Informational Functions 77
81 add doc file 7
8.2 apropos 7
83 _ FILE e 78
84 function mame. L 79
85 get defined symbols 79
86 get doc files. 79
8.7 get doc string from file 00 000000 80
8.8 get mamespaceso e 80
89 is defined 80
8.10 is imitialized Lo L L 81
811 NARGS e e 82
812 set doc files 82
813 slang doc dir 83
814 slang version e 83
8.15 slang version string. 83
Mathematical Functions 85
9.1 abs e 85
9.2 acos 85
9.3 acosh e 86
9.4 asin e 86
9.5 asinh L e 86
9.6 atan e e e 87
9.7 atan2 L 87
9.8 atanh 87
9.9 ceil 88
9.10 Comj. 88
9.11 cos o e 88
9.12 cosh e 89
9.13 diff 89
9.14 eXP . . . e e e 89
9.15 expmlo e e e e 90
9.16 feqs L e 90

X CONTENTS

9.17 fgteqs L e 91
9.18 floor e 91
9.19 fitegs 91
9.20 fneqs e 92
9.21 get float format L. 92
9.22 hypot 92
9.23 Tmag e e 93
9.24 isinf L e 93
0.25 ISNAN e e e e e e e 94
9.26 _dsmeg e 94
9.27 dsnmommeg 95
9.28 ISPOS e 95
9.20 108 © « o e 95
9.30 logl0 96
9.31 loglp e e 96
932 max 96
9.33 _min e 97
934 mul2 e 97
9.35 mint e 98
9.36 polynom 98
9.37T Real o L e 99
938 round L e 99
9.39 set float format 00 0 oL 99
9.40 SIgN L e 100
041 SIN e e e 100
0.42 SINCOSl e e 101
9.43 sinh L 101
.44 SQT L e e 101
9.45 sqrt L 102
046 tan e e e 102
9.47 tanh L e 102
10 Message and Error Functions 105

10.1 errmo e e e e e e e e e 105

CONTENTS xi

10.2 errno_string 106
10.3 error e e e e e e 107
104 get exception info 00 0 0L 107
10.5 message 108
10.6 new exception 109
10.7 usage e e e e e e e e e 109
10.8 Verror L e e e e e 110
10.9 vmessage Ll e 111
11 Time and Date Functions 113
11.1 ctimeo e e 113
11.2 gmtime e e e 113
11.3 localtime L 114
11.4 mktime L 114
115 strftime oL 115
116 tico 116
11.7 tic . . . o e e 116
118 time 117
11.9 time L 117
11.10tImegm o e e e e e 117
11.116ImMeS . . . o o o e e e e e 118
1112 _toc . . . o oo 118
11.13toc o o e e 119
12 Data-Type Conversion Functions 121
12.1 atof o e 121
12.2 atol e e e e e e e e 121
12.3 atol e e e e 122
124 atoll e 122
125 char 123
12.6 define _case 123
12.7 double L 124
12.8 Int L e e e e e e e 124

129 integer e e e 125

xii

CONTENTS

12.10isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint,

ispunct, isspace, isupper, isxdigit oL oL 125
12,11 slang _guess type e 126
12.128tring . . . o o L e e e e 126
12.13tolower e e 127
12.14toupper e e e e e e 127
12.15typecast L e e e e e 128
1216 _typeof 128
12.17typeof L e 129

13 Stdio File I/O Functions 131
13.1 clearerr 131
13.2 fclose 131
13.3 fdopen e 132
13.4 feof L 133
13.5 ferror L 133
13.6 fHush L. 133
13.7 fgets o 134
13.8 fgetslines L 135
13.9 fopen L e e 136
13.10fprintf. 137
13.11fputs L e e e 137
13.12fputslines L e 138
13.13fread L e e 138
13.14fread _bytes L L 139
13.156fseek e e 139
13.16ftell e e 140
13.17fwrite Lo 140
13.18pclose L 141
13.19popen e e 141
13.20printfo 142
1321setvbuf 143

14 Low-level POSIX I/0 functions 145

14.1 close e e e e e e e e e e e 145

CONTENTS xiii
0 145
43 dap fd 146
144 dup2 fd 146
145 filemo 146
14.6 fileno 147
14.7 dsatty e e 147
14.8 Iseek . . . oL 147
14.9 open. L e e e 148
14.10read e 149
14.11write . . . o o e 149

15 Signal Functions 151
15.1 alarm oL e e 151
15.2 getitimer 152
15.3 setitimer 153
154 signal L e e 153
15.5 sigprocmask e 154
15.6 sigsuspendl 155

16 Directory Functions 157
16.1 access 157
16.2 chdir e 157
16.3 chmod e 158
16.4 chown L 158
16.5 getewd e 159
16.6 hardlink 159
16.7 Ichown oL 159
16.8 Listdir 160
169 Istat_file 160
16.10mkdiro 161
16.11readlink 161
16.12removel e e e e 162
16.13rename Lo e 162
16.14rmdir e 162
16.15stat _file 163

xiv CONTENTS
16.16stat is 164
16.17stat mode to stringo 164
16.18symlink oL 165
16.19utime L 165

17 Functions that Parse Filenames 167
17.1 path_basename 00 167
17.2 path basename sans extmame 167
173 path_concat L o 168
17.4 path dirname o 168
175 path _extname L 168
17.6 path _get delimiter. 169
17.7 path_is _absolute 0oL 169
17.8 path sans extname 169

18 System Call Functions 171
18.1 getegid L 171
18.2 geteuid L 171
183 getgid 172
184 getpgid e e 172
185 getpgrp L 172
18.6 getpid e 173
18.7 getppid e 173
18.8 getpriority 173
18.9 getrusage L e 174
18.10getsid e e 175
18.11getUid . . o o o o 175
18.12Kill e 176
18.13KILlPE . . . o o e 176
18 14mkfifo L. 177
18.15setgid e 177
18.16setpgid e 178
18.17setpriority 178
18.18setsid L. 179

18 19setuld e 179

CONTENTS XV
18.20sleep L 180
18.21system L e 180
18.22system intr 180
1823umask e 181
18.24uname e e e e e 181

19 Eval Functions 183
190 $ 183
19.2 autoload 183
19.3 byte compile file oo L 184
19.4 eval . . . L e 184
19.5 evalfile L 185
19.6 get slang load path 186
19.7 set _slang load path 186

20 Qualifier Functions 189
20.1 qualifier L e 189
20.2 qualifiers 190
20.3 qualifier exists. L L 191

21 Module Functions 193
21.1 get import module path, 193
21.2 Import e 193
21.3 set _import module path 000, 194

22 Debugging Functions 195
22.1 bofeof info 195
222 boseos info 195
223 clear _error 196
224 get frame info oo oL o oo 197
22.5 get frame wvariable0 00 00 0L 198
22.6 set bof handler 198
22.7 set bos handler 00 0L 199
22.8 set eof handler. L. 199
229 set _eos _handler 0 0oL 200
22.10_slangtraceo e 200

xvi CONTENTS
22.11 traceback 201
22.12 trace function Lo L L 201
22.13 _use frame mnamespace 201

23 Stack Functions 203
23.1 dup ... e e 203
23.2 exch L 203
23.3 POD - - . e e 204
234 POP_@TES e e e e e e 204
23.5 pop list 205
236 POP_ M e 206
23.7 print_stack 206
23.8 push_args e 206
239 push list 207
23.10 stkdepth 207
23.11 stk reverse 207
23.12 stk roll 208

24 Functions that deal with the S-Lang readline interface 209
241 rline_bolp e 209
242 rline _call 209
243 rline_del e 210
244 rline_eolp e 210
245 rline getkey 211
24.6 rline_get edit width 0., 211
24.7 rline_get history oL L o 211
248 rline get line L 212
249 rline_get point L o 212
24.10rline_input_pending oL L Lo Lo 213
24.11rline _ins 213
24.12rline_setkey e 213
24.13rline_set completion callback 214
24.14rline _set history L L 215
24.15rline _set lime L 215
24.16rline set list completions callback 216

CONTENTS xvii

24.17rline_set point L L 216
24.18rline _umsetkey Lo L 217
25 Miscellaneous Functions 219
25.1 auto declare 219
25.2 class _id e 220
25.3 _ class_type e 220
25.4 current NamesSPAaCEeo e e 220
25.5 datatype 221
25,6 eqs e 221
25.7 get_environ e 222
25.8 getenv . . .o e e e e 222
25.9 get reference L L 223
25.10implements 223
25.11 _is_callable o 224
25.12_ _is_datatype mnumeric 0L 225
25.13 is mumeric 225
25.14 ds same 225
25.10putenv e e e e e e 226
25,16 _set_argc _argv e 226
25.17 slang install prefix 227
25.18 slang wutf8 ok 227
2519 BMP . .. 228
25.20 _wuminitialize0 L 228

25.21use _NameSPACEt .t e e e e e e e e 229

xviii CONTENTS

Chapter 1

Data Types

1.1 Assoc_Type

Synopsis
An associative array or hash type

Description

An Assoc_Type object is like an array except that it is indexed using strings and not integers.
Unlike an Array_Type object, the size of an associative array is not fixed, but grows as objects
are added to the array. Another difference is that ordinary arrays represent ordered object;
however, the ordering of the elements of an Assoc_Type object is unspecified.

An Assoc_Type object whose elements are of some data-type d may be created using using
A = Assoc_Typeld];

For example,
A = Assoc_Type[Int_Typel;

will create an associative array of integers. To create an associative array capable of storing
an arbitrary type, use the form

A = Assoc_Typell;
An optional parameter may be used to specify a default value for array elements. For example,
A = Assoc_Type[Int_Type, -1];

creates an integer-valued associative array with a default element value of -1. Then A["foo0"]
will return -1 if the key "foo" does not exist in the array. Default values are available only if
the type was specified when the associative array was created.

The following functions may be used with associative arrays:

assoc_get_keys
assoc_get_values
assoc_key_exists

assoc_delete_key

2 Chapter 1. Data Types

The length function may be used to obtain the number of elements in the array.

The foreach construct may be used with associative arrays via one of the following forms:

foreach k,v (A) {...}

foreach k (A) using ("keys") { ... }
foreach v (A) using ("values") { ... }
foreach k,v (A) using ("keys", "values") { ... }

In all the above forms, the loop is over all elements of the array such that v=A[k].

See Also
1.3 (List_ Type), ?? (Array_Type), 1.5 (Struct _Type)

1.2 File Type

Synopsis
A type representing a C stdio object

Description

An File_Type is the interpreter’s representation of a C stdio FILE object and is usually created
using the fopen function, i.e.,

fp = fopen ("file.dat", "r");
Functions that utilize the File_Type include:

fopen
fclose
fgets
fputs
ferror
feof
fflush
fprintf
fseek
ftell
fread
furite

fread_bytes
The foreach construct may be used with File_Type objects via one of the following forms:

foreach line (fp) {...}

foreach byte (A) using ("char") { ... } % read bytes
foreach line (A) using ("line") { ... } % read lines (default)
foreach line (A) using ("wsline") { ... } % whitespace stripped from lines

See Also
1.3 (List_ Type), ?? (Array_Type), 1.5 (Struct_Type)

1.3. List Type 3

1.3 List Type

Synopsis
A list object

Description
An object of type List_Type represents a list, which is defined as an ordered heterogeneous

collection of objects. A list may be created using, e.g.,

empty_list = {};
list_with_4_items = {[1:10], "three", 9, {1,2,3}};

Note that the last item of the list in the last example is also a list. A List Type object may
be manipulated by the following functions:

list_new
list_insert
list_append
list_delete
list_reverse

list_pop

A List_Type object may be indexed using an array syntax with the first item on the list given
by an index of 0. The length function may be used to obtain the number of elements in the
list.

A copy of the list may be created using the @ operator, e.g., copy = @list.

The foreach statement may be used with a List_Type object to loop over its elements:
foreach elem (1ist) {....}

See Also
?? (Array Type), 1.1 (Assoc_Type), 1.5 (Struct _Type)

1.4 String Type

Synopsis
A string object

Description

An object of type String_Type represents a string of bytes or characters, which in general
have different semantics depending upon the UTF-8 mode.

The string obeys byte-semantics when indexed as an array. That is, S[0] will return the first
byte of the string S. For character semantics, the nth character in the string may be obtained
using substr function.

The foreach statement may be used with a String_Type object S to loop over its bytes:

foreach b (S) {....}
foreach b (S) using ("bytes") {....}

4 Chapter 1. Data Types

To loop over its characters, the following form may be used:

foreach ¢ (8) using ("chars") {...}

When UTF-8 mode is not in effect, the byte and character forms will produce the same
sequence. Otherwise, the string will be decoded to generate the (wide) character sequence. If
the string contains an invalid UTF-8 encoded character, successive bytes of the invalid sequence
will be returned as negative integers. For example, "a\xAB\x{AB}" specifies a string composed
of the character a, a byte 0xAB, and the character 0xAB. In this case,

foreach ¢ ("a\xAB\x{AB}") {...}
will produce the integer-valued sequence ’a’, -0xAB, OxAB.

See Also
?? (Array_Type), 25.18 (_slang utf8 ok)

1.5 Struct_ Type

Synopsis

A structure datatype

Description
A Struct_Type object with fields £1, £2,..., N may be created using
s = struct { f1, f2, ..., fN };
The fields may be accessed via the "dot" operator, e.g.,

s.f1 = 3;
if (s12.f1 == 4) s.fl++;

By default, all fields will be initialized to NULL.
A structure may also be created using the dereference operator (@):

s = @Struct_Type ("f1", "f2", ..., "fN");
@Struct_Type ¢ ["£1", "f2", ..., "fN"]);

2]
1]

Functions for manipulating structure fields include:

_push_struct_field_values
get_struct_field
get_struct_field_names
set_struct_field

set_struct_fields

The foreach loop may be used to loop over elements of a linked list. Suppose that first
structure in the list is called root, and that the child field is used to form the chain. Then
one may walk the list using:

1.5. Struct Type 5

foreach s (root) using ("child")

{

% s will take on successive values in the list

}

The loop will terminate when the last elements child field is NULL. If no “linking” field is
specified, the field name will default to next.

User-defined data types are similar to the Struct_Type. A type, e.g., Vector_Type may be
created using:

typedef struct { x, y, z } Vector_Type;
Objects of this type may be created via the @ operator, e.g.,
v = @Vector_Type;
It is recommended that this be used in a function for creating such types, e.g.,

define vector (x, y, z)
{

variable v = @Vector_Type;

V.X = X3
vV.y =7
v.Z = z;
return v;

}

The action of the binary and unary operators may be defined for such types. Consider the
"+" operator. First define a function for adding two Vector_Type objects:

static define vector_add (vi1, v2)

{

return vector (vl.x+v2.x, vi.y+v2.y, vl.z, v2.z);

Then use
__add_binary ("4, Vector_Type, &vector_add, Vector_Type, Vector_Type);

to indicate that the function is to be called whenever the "+" binary operation between two

Vector_Type objects takes place, e.g.,

V1l = vector (1, 2, 3);
V2 = vector (8, 9, 1);
V3 V1l + V2;

will assigned the vector (9, 11, 4) to V3. Similarly, the "*" operator between scalars and

vectors may be defined using:

static define vector_scalar_mul (v, a)

{

return vector (a*v.x, a*v.y, a*v.z);

Chapter 1. Data Types

static define scalar_vector_mul (a, v)

{

return vector_scalar_mul (v, a);

}
__add_binary [GELN Vector_Type, &scalar_vector_mul, Any_Type, Vector_Type);

__add_binary [GELN Vector_Type, &vector_scalar_mul, Vector_Type, Any_Type);

Related functions include:

__add_unary
__add_string
__add_destroy
See Also
1.3 (List_Type), 1.1 (Assoc_Type)

Chapter 2

Array Functions

2.1 all

Synopsis
Tests if all elements of an array are non-zero
Usage

Char_Type all (Array_Type a [,Int_Type dim])

Description

The all function examines the elements of a numeric array and returns 1 if all elements are
non-zero, otherwise it returns 0. If a second argument is given, then it specifies the dimension
of the array over which the function is to be applied. In this case, the result will be an array
with the same shape as the input array minus the specified dimension.

Example

Consider the 2-d array

2 3 4 5
7 8 9 10

generated by
a = _reshape ([1:101, [2, 51);

Then all(a) will return 1, and all(a>3, 0) will return a 1-d array
[0, o, 0, 1, 1]

Similarly, all(a>3, 1) will return the 1-d array
[0,1]

See Also
2.24 (where), 2.2 (any), 2.25 (wherediff)

Chapter 2. Array Functions

2.2 any

Synopsis
Test if any element of an array is non-zero

Usage
Char_Type any (Array_Type a [,Int_Type dim])

Description
The any function examines the elements of a numeric array and returns 1 if any element is

both non-zero and not a NaN, otherwise it returns 0. If a second argument is given, then it

specifies the dimension of the array to be tested.

Example
Consider the 2-d array
2
6 7 8
generated by
a = _reshape ([1:101, [2, 51);

Then any(a==3) will return 1, and any(a==3, 0) will return a 1-d array with elements

0 0 1 0 0

See Also
2.1 (all), 2.24 (where), 2.25 (wherediff)

2.3 array info

Synopsis
Returns information about an array

Usage
(Array_Type, Integer_Type, DataType_Type) array_info (Array_Type a)

Description
The array_info function returns information about the array a. It returns three values: an

1-d integer array specifying the size of each dimension of a, the number of dimensions of a,

and the data type of a.

Example
The array_info function may be used to find the number of rows of an array:

2.4. array map

define num_rows (a)

{
variable dims, num_dims, data_type;
(dims, num_dims, data_type) = array_info (a);
return dims [0];

}

See Also
12.17 (typeof), 2.6 (array_shape), 2.13 (length), 2.19 (reshape), 2.18 (_reshape)

2.4 array map
Synopsis
Apply a function to each element of an array

Usage

Array_Type array_map (type, func, args...)

Usage
(Array_Type, ...) array_map (type, ..., func, args...)
DataType_Type type, ...;
Ref_Type func;
Description

The array_map function may be used to apply a function to each element of an array and

returns the resulting values as an array of the specified type. The type parameter indicates

what kind of array should be returned and generally corresponds to the return type of the

function. If the function returns multiple values, then the type of each return value must be

given. The first array-valued argument is used to determine the dimensions of the resulting

array(s). If any subsequent arguments correspond to an array of the same size, then those

array elements will be passed in parallel with the elements of the first array argument.

To use array_map with functions that return no value, either omit the type argument, or

explicitly indicate that it returns no value using the Void_Type type.

Example

The first example illustrates how to apply the strlen function to an array of strings.

S = [nn’ "Train", nsubwayu’ ncarn];

L = array_map (Integer_Type, &strlen, S);
This is equivalent to:

S = [nu’ "Train", nsubwayu’ ucarn];
L = Integer_Type [length (S)1;
for (i = 0; i < length (S); i++) L[i] = strlen (S[il);

Now consider an example involving the strcat function:

10 Chapter 2. Array Functions

files = ["slang", "slstring", "slarray"];

exts = ".c";
cfiles = array_map (String_Type, &strcat, files, exts);

% ==> cfiles = ["slang.c", "slstring.c", "slarray.c"];

exts = [".a",".b",".c"];
xfiles = array_map (String_Type, &strcat, files, exts);

% ==> xfiles = ["slang.a", "slstring.b", "slarray.c"];

Here is an example of its application to a function that returns 3 values. Suppose A is an array
of arrays whose types and sizes are arbitrary, and we wish to find the indices of A that contain
arrays of type String_Type. For this purpose, the array_info function will be used:

(dims, ndims, types)
= array_map (Array_Type, Int_Type, DataType_Type, &array_info, A);
i = where (types == String_Type);

The message function prints a string and returns no value. This example shows how it may
be used to print an array of strings:

a = ["Line 1", "Line 2", "Line 3"];
array_map (&message, a); % Form 1

array_map (Void_Type, &message, a); /% Form 2

Notes

Many mathematical functions already work transparently on arrays. For example, the following
two statements produce identical results:

B = sin (A);
B = array_map (Double_Type, &sin, A);

Notes

A number of the string functions have been vectorized, including the strlen function. This
means that there is no need to use the array_map function with the strlen function.

See Also
2.3 (array _info), 4.24 (strlen), 4.14 (strcat), 9.41 (sin)

2.5 array reverse
Synopsis
Reverse the elements of an array

Usage

array_reverse (Array_Type a [,Int_Type i0O, Int_Type il] [,Int_Type dim])

Description

2.6. array shape 11

In its simplest form, the array_reverse function reverses the elements of an array. If passed
2 or 4 arguments, array_reverse reverses the elements of the specified dimension of a multi-
dimensional array. If passed 3 or 4 arguments, the parameters i0 and i1 specify a range of

elements to reverse.

Example
If a is a one dimensional array, then
array_reverse (a, i, j);
alli:j1] = allj:i:-111;

are equivalent to one another. However, the form using array_reverse is about 10 times

faster than the version that uses explicit array indexing.

See Also
2.8 (array _swap), 2.23 (transpose)

2.6 array shape

Synopsis

Get the shape or dimensions of an array

Usage
dims = array_shape (Array_Type a)

Description

This function returns an array representing the dimensionality or shape of a specified array.
The array_info function also returns this information but for many purposes the array_shape

function is more convenient.

See Also
2.3 (array _info), 2.19 (reshape)

2.7 array sort

Synopsis

Sort an array or opaque object

Usage
Array_Type array_sort (obj [, &func [, nl])

Description
The array_sort function may be used to sort an object and returns an integer index array
that represents the result of the sort as a permutation.
If a single parameter is passed, that parameter must be an array, which will be sorted into

ascending order using a built-in type-specific comparison function.

12

Chapter 2. Array Functions

If two parameters are passed (obj and func), then the first parameter must be the array to be
sorted, and the second is a reference to the comparison function. In this case, the comparison
function represented by func must take two arguments representing two array elements to
be compared, and must return an integer that represents the result of the comparison. The
return value must be less than zero if the first parameter is less than the second, zero if they
are equal, and a value greater than zero if the first is greater than the second.

If three parameters are passed, then the first argument will be regarded as an opaque object by
the sorting algorithm. For this reason, the number of elements represented by the object must
also be passed to array_sort function as the third function argument. The second function
argument must be a reference to comparison function. In this case, the comparison function
will be passed three values: the opaque object, the (0-based) index of the first element to be
compared, and the (0-based) index of the second element. The return value must be less than
zero if the value of the element at the first index considered to be less than the value of the
element at the second index, zero if the values are equal, and a value greater than zero if the
first value is greater than the second.

array_sort sorts the array a into ascending order and returns an integer array that represents
the result of the sort. If the optional second parameter f is present, the function specified by
f will be used to compare elements of a; otherwise, a built-in sorting function will be used.

The integer array returned by this function is simply an index array that indicates the order
of the sorted object. The input object obj is not changed.

Qualifiers

By default, elements are sorted in ascending order. The dir qualifier may be used to specify
the sort direction. Specifically if dir>=0, the sort will be an ascending one, otherwise it will
be descending.

The method qualifier may be used to select between the available sorting algorithms. There are
currently two algorithms supported: merge-sort and quick-sort. Using method="msort" will
cause the merge-sort algorithm to be used. The quick-sort algorithm may be selected using
method="qgsort".

Example

An array of strings may be sorted using the strcmp function since it fits the specification for
the sorting function described above:

[ngamman s "alpha" S "beta"] ;

I = array_sort (A, &strcmp);
Alternatively, one may use
variable I = array_sort (A);

to use the built-in comparison function.

After the array_sort has executed, the variable I will have the values [2, 0, 1]. This array
can be used to re-shuffle the elements of A into the sorted order via the array index expression
A = A[I]. This operation may also be written:

A = Alarray_sort(A)];

2.8. array swap 13

Example

A homogeneous list may be sorted by using the opaque form of the array_sort function:

private define cmp_function (s, i, j)

{
if (s[i] > s[j]) return 1;
if (s[i] < s[j]) return -1;
return O;

}

list = {};

% £ill list

% now sort it

i = array_sort (list, &cmp_function, length(list));

% Create a new sorted list
list = list[i];

Alternatively one may first convert it to an array and use the built-in comparison function:

a = list_to_array (list);
i = array_sort(a);
% Rearrange the elements

list[*] = alil;
to get the effect of an "in-place" sort.

Notes

The default sorting algorithm is merge-sort. It has an N*log(N) worst-case runtime compared
to quick-sort’s worst-case N*2 runtime. The primary advantage of quick-sort is that it uses
O(1) additional memory, whereas merge-sort requires O(N) additional memory.

A stable sorting algorithm is one that preserves the order of equal elements. Merge-sort is an
inherently stable algorithm, whereas quick-sort is not. Nevertheless, the slang library ensures
the stability of the results because it uses the indices themeselves as tie-breakers. As a result,
the following two statments may not produce the same results:

i = array_sort (a; dir=-1);

i = array_reverse (array_sort (a; dir=1));

See Also
2.20 (set_default sort method), 2.10 (get default sort method), 4.18 (strcmp), 7.9

(list_to_array)
2.8 array swap

Synopsis

Swap elements of an array

14 Chapter 2. Array Functions

Usage
array_swap (Array_Type a, Int_Type i, Int_Type j)
Description
The array_swap function swaps the specified elements of an array. It is equivalent to
(alil, aljl) = (aljl, alil);
except that it executes several times faster than the above construct.

See Also

2.5 (array _reverse), 2.23 (transpose)

2.9 cumsum

Synopsis
Compute the cumulative sum of an array
Usage

result = cumsum (Array_Type a [, Int_Type dim])

Description

The cumsum function performs a cumulative sum over the elements of a numeric array and
returns the result. If a second argument is given, then it specifies the dimension of the
array to be summed over. For example, the cumulative sum of [1,2,3,4], is the array
[1,1+2,1+2+3,1+2+3+4], i.e., [1,3,6,10].

See Also
2.21 (sum), 2.22 (sumsq)

2.10 get default sort method

Synopsis
Get the default sorting method
Usage

String_Type get_default_sort_method ()

Description

This function may be used to get the default sorting method used by array_sort. It will
return one of the following strings:

"msort" Merge-Sort

"gsort" Quick-Sort

See Also
2.20 (set _default sort method), 2.7 (array sort)

2.11. init char array 15

2.11 init char array

Synopsis
Initialize an array of characters
Usage

init_char_array (Array_Type a, String_Type s)

Description
The init_char_array function may be used to initialize a Char Type array a by setting the
elements of the array a to the corresponding bytes of the string s.

Example

The statements

variable a = Char_Type [10];

init_char_array (a, "HelloWorld");
creates an character array and initializes its elements to the bytes in the string "HelloWorld".

Notes

The character array must be large enough to hold all the characters of the initialization string.
This function uses byte-semantics.

See Also
5.2 (bstring_to_array), 4.24 (strlen), 4.14 (strcat)

2.12 _isnull

Synopsis

Check an array for NULL elements
Usage

Char_Typel] = _isnull (all)

Description

This function may be used to test for the presence of NULL elements of an array. Specifically,
it returns a Char_Type array of with the same number of elements and dimensionality of the
input array. If an element of the input array is NULL, then the corresponding element of the
output array will be set to 1, otherwise it will be set to 0.

Example

Set all NULL elements of a string array A to the empty string "":
Alwhere(_isnull(A))] = "";

Notes

It is important to understand the difference between A==NULL and _isnull(A). The latter
tests all elements of A against NULL, whereas the former only tests A itself.

16 Chapter 2. Array Functions

See Also
2.24 (where), 2.4 (array _map)

2.13 length

Synopsis
Get the length of an object

Usage
Integer_Type length (obj)

Description
The length function may be used to get information about the length of an object. For simple
scalar data-types, it returns 1. For arrays, it returns the total number of elements of the array.
Notes

If obj is a string, length returns 1 because a String_Type object is considered to be a scalar.
To get the number of characters in a string, use the strlen function.

See Also
2.3 (array _info), 2.6 (array_shape), 12.17 (typeof), 4.24 (strlen)

2.14 max

Synopsis

Get the maximum value of an array

Usage
result = max (Array_Type a [,Int_Type dim])

Description

The max function examines the elements of a numeric array and returns the value of the
largest element. If a second argument is given, then it specifies the dimension of the array to
be searched. In this case, an array of dimension one less than that of the input array will be
returned with the corresponding elements in the specified dimension replaced by the maximum
value in that dimension.

Example

Consider the 2-d array

2 3 4 5
6 7 8 9 10

generated by

a = _reshape ([1:10], [2, 5]1);

2.15. maxabs 17

Then max(a) will return 10, and max(a,0) will return a 1-d array with elements
6 7 8 9 10

Notes

This function ignores NaNs in the input array.

See Also
2.16 (min), 2.15 (maxabs), 2.21 (sum), 2.19 (reshape)

2.15 maxabs

Synopsis

Get the maximum absolute value of an array

Usage
result = maxabs (Array_Type a [,Int_Type dim])

Description

The maxabs function behaves like the max function except that it returns the maximum absolute
value of the array. That is, maxabs(x) is equivalent to max(abs(x). See the documentation
for the max function for more information.

See Also
2.16 (min), 2.14 (max), 2.17 (minabs)

2.16 min

Synopsis

Get the minimum value of an array

Usage
result = min (Array_Type a [,Int_Type dim])

Description

The min function examines the elements of a numeric array and returns the value of the
smallest element. If a second argument is given, then it specifies the dimension of the array to
be searched. In this case, an array of dimension one less than that of the input array will be
returned with the corresponding elements in the specified dimension replaced by the minimum
value in that dimension.

Example

Consider the 2-d array

18 Chapter 2. Array Functions

generated by
a = _reshape ([1:10], [2, 51);

Then min(a) will return 1, and min(a,0) will return a 1-d array with elements
1 2 3 4 5

Notes

This function ignores NaNs in the input array.

See Also
2.14 (max), 2.21 (sum), 2.19 (reshape)

2.17 minabs

Synopsis

Get the minimum absolute value of an array

Usage
result = minabs (Array_Type a [,Int_Type dim])

Description

The minabs function behaves like the min function except that it returns the minimum absolute
value of the array. That is, minabs(x) is equivalent to min(abs(x). See the documentation
for the min function for more information.

See Also
2.16 (min), 2.14 (max), 2.15 (maxabs)

2.18 _reshape

Synopsis

Copy an array to a new shape

Usage
Array_Type _reshape (Array_Type A, Array_Type I)

Description

The _reshape function creates a copy of an array A, reshapes it to the form specified by I and
returns the result. The elements of I specify the new dimensions of the copy of A and must be
consistent with the number of elements A.

Example

If Ais a 100 element 1-d array, a new 2-d array of size 20 by 5 may be created from the
elements of A by

2.19. reshape 19

B = _reshape (A, [20, 5]);

Notes

The reshape function performs a similar function to _reshape. In fact, the _reshape function
could have been implemented via:

define _reshape (a, i)

{
a = Qa; % Make a new copy
reshape (a, 1i);

return a;

See Also

2.19 (reshape), 2.6 (array shape), 2.3 (array info)

2.19 reshape

Synopsis

Reshape an array

Usage

reshape (Array_Type A, Array_Type I)

Description

The reshape function changes the shape of A to have the shape specified by the 1-d integer
array I. The elements of I specify the new dimensions of A and must be consistent with the
number of elements A.

Example

If Ais a 100 element 1-d array, it can be changed to a 2-d 20 by 5 array via
reshape (A, [20, 5]);

However, reshape(A, [11,5]) will result in an error because the [11,5] array specifies 55
elements.

Notes

Since reshape modifies the shape of an array, and arrays are treated as references, then all
references to the array will reference the new shape. If this effect is unwanted, then use the
_reshape function instead.

See Also

2.18 (_reshape), 2.3 (array _info), 2.6 (array _shape)

20 Chapter 2. Array Functions

2.20 set default sort method

Synopsis
Set the default sorting method
Usage

set_default_sort_method (String_Type method)

Description

This function may be used to set the default sorting method used by array_sort. The following
methods are supported:

"msort" Merge-Sort

"gsort" Quick-Sort

See Also
2.10 (get _default sort method), 2.7 (array sort)

2.21 sum

Synopsis
Sum over the elements of an array
Usage
result = sum (Array_Type a [, Int_Type dim])

Description

The sum function sums over the elements of a numeric array and returns its result. If a second
argument is given, then it specifies the dimension of the array to be summed over. In this
case, an array of dimension one less than that of the input array will be returned.

If the input array is an integer type, then the resulting value will be a Double_Type. If the
input array is a Float_Type, then the result will be a Float_Type.

Example

The mean of an array a of numbers is
sum(a) /length(a)

See Also
2.9 (cumsum), 2.22 (sumsq), 2.23 (transpose), 2.19 (reshape)

2.22 sumsq

Synopsis

Sum over the squares of the elements of an array

2.23. transpose 21

Usage
result = sumsq (Array_Type a [, Int_Type dim])

Description

The sumsq function sums over the squares of the elements of a numeric array and returns its
result. If a second argument is given, then it specifies the dimension of the array to be summed
over. In this case, an array of dimension one less than that of the input array will be returned.

If the input array is an integer type, then the resulting value will be a Double_Type. If the
input array is a Float_Type, then the result will be a Float_Type.

For complex arrays, the sum will be over the squares of the moduli of the complex elements.

See Also
2.9 (cumsum), 2.22 (sumsq), 9.22 (hypot), 2.23 (transpose), 2.19 (reshape)

2.23 transpose

Synopsis
Transpose an array

Usage
Array_Type transpose (Array_Type a)

Description

The transpose function returns the transpose of a specified array. By definition, the transpose
of an array, say one with elements a[i,j,...k] is an array whose elements are alk,...,j,i].

See Also
2.18 (_reshape), 2.19 (reshape), 2.21 (sum), 2.3 (array _info), 2.6 (array shape)

2.24 where

Usage
Array_Type where (Array_Type a [, Ref_Type jpl)

Description

The where function examines a numeric array a and returns an integer array giving the indices
of a where the corresponding element of a is non-zero. The function accepts an optional
Ref_Type argument that will be set to complement set of indices, that is, the indices where a
is zero. In fact

where (a);

-
1]

= where (not a);

.
|

and

where (a, &j);

-
1]

22 Chapter 2. Array Functions
are equivalent, but the latter form is preferred since it executes about twice as fast as the
former.

The where function can also be used with relational operators and with the boolean binary or
and and operators, e.g.,
a = where (array == "a string");
a = where (array <= 5);
a = where (2 <= array <= 10);
a = where ((array == "a string") or (array == "another string"));
Using in the last example the short-circuiting || and && operators, will result in a
TypeMismatchError exception.
Although this function may appear to be simple or even trivial, it is arguably one of the most
important and powerful functions for manipulating arrays.
Example
Consider the following:
variable X = [0.0:10.0:0.01];
variable A = sin (X);
variable I = where (A < 0.0);
A[Il = cos (X) [II;
Here the variable X has been assigned an array of doubles whose elements range from 0.0
through 10.0 in increments of 0.01. The second statement assigns A to an array whose
elements are the sin of the elements of X. The third statement uses the where function to get
the indices of the elements of A that are less than 0. Finally, the last statement replaces those
elements of A by the cosine of the corresponding elements of X.
Notes
Support for the optional argument was added to version 2.1.0.
See Also

2.26 (wherefirst), 2.29 (wherelast), 2.32 (wherenot), 2.25 (wherediff), 2.3 (array info), 2.6
(array _shape), 2.12 (_isnull)

2.25 wherediff

Synopsis

Get the indices where adjacent elements differ

Usage

Array_Type wherediff (Array_Type A [, Ref_Type jpl)

Description

This function returns an array of the indices where adjacent elements of the array A differ. If
the optional second argument is given, it must be a reference to a variable whose value will be
set to the complement indices (those where adjacient elements are the same).

2.26. wherefirst 23

The returned array of indices will consist of those elements i where A[i] !'= A[i-1]. Since
no element preceeds the Oth element, A[0] differs from its non-existing preceeding element;
hence the index 0 will a member of the returned array.

Example
Suppose that A = [1, 1, 3, 0, 0, 4, 7, 7]. Then,
i = wherediff (A, &j);
will result in i = [0, 2, 3, 5, 6] and j = [1, 4, 7].
Notes
Higher dimensional arrays are treated as a 1-d array of contiguous elements.

See Also

2.24 (where), 2.32 (wherenot)

2.26 wherefirst

Synopsis

Get the index of the first non-zero array element
Usage

Int_Type wherefirst (Array_Type a [,start_index])
Description

The wherefirst function returns the index of the first non-zero element of a specified array.
If the optional parameter start_index is given, the search will take place starting from that
index. If a non-zero element is not found, the function will return NULL.

Notes

The single parameter version of this function is equivalent to

define wherefirst (a)

{
variable i = where (a);
if (length(i))
return i[0];
else
return NULL;
}

See Also

2.24 (where), 2.29 (wherelast), ?? (wherfirstmin), ?? (wherfirstmax)

24 Chapter 2. Array Functions

2.27 wherefirstmax

Synopsis
Get the index of the first maximum array value
Usage

Int_Type wherefirstmax (Array_Type a)

Description

This function is equivalent to
index = wherefirst (a == max(a));
It executes about 3 times faster, and does not require the creation of temporary arrays.

See Also
2.26 (wherefirst), 2.27 (wherefirstmax), 2.31 (wherelastmin), 2.16 (min), 2.14 (max)

2.28 wherefirstmin

Synopsis
Get the index of the first minimum array value
Usage
Int_Type wherefirstmin (Array_Type a)
Description
This function is equivalent to
index = wherefirst (a == min(a));
It executes about 3 times faster, and does not require the creation of temporary arrays.

See Also
2.26 (wherefirst), 2.31 (wherelastmin), 2.27 (wherefirstmax), 2.16 (min), 2.14 (max)

2.29 wherelast

Synopsis

Get the index of the last non-zero array element

Usage

Int_Type wherelast (Array_Type a [,start_index])

Description

The wherelast function returns the index of the last non-zero element of a specified array.
If the optional parameter start_index is given, the backward search will take place starting
from that index. If a non-zero element is not found, the function will return NULL.

2.30. wherelastmax 25

Notes

The single parameter version of this function is equivalent to

define wherelast (a)

{
variable i = where (a);
if (length(i))
return i[-1];
else
return NULL;
}

See Also
2.24 (where), 2.26 (wherefirst), 2.31 (wherelastmin), 2.30 (wherelastmax)

2.30 wherelastmax

Synopsis
Get the index of the last maximum array value

Usage
Int_Type wherelastmax (Array_Type a)

Description

This function is equivalent to
index = wherelast (a == max(a));
It executes about 3 times faster, and does not require the creation of temporary arrays.

See Also
2.29 (wherelast), 2.28 (wherefirstmin), 2.31 (wherelastmin), 2.16 (min), 2.14 (max)

2.31 wherelastmin

Synopsis
Get the index of the last minimum array value
Usage

Int_Type wherelastmin (Array_Type a)

Description

This function is equivalent to
index = wherelast (a == min(a));
It executes about 3 times faster, and does not require the creation of temporary arrays.

See Also
2.29 (wherelast), 2.28 (wherefirstmin), 2.30 (wherelastmax), 2.16 (min), 2.14 (max)

26 Chapter 2. Array Functions

2.32 wherenot

Synopsis
Get indices where a numeric array is 0

Usage
Array_Type wherenot (Array_Type a)

Description

This function is equivalent to where(not a). See the documentation for where for more
information.

See Also
2.24 (where), 2.25 (wherediff), 2.26 (wherefirst), 2.29 (wherelast)

Chapter 3

Associative Array Functions

3.1 assoc_delete key

Synopsis
Delete a key from an Associative Array

Usage

assoc_delete_key (Assoc_Type a, String_Type k)

Description

The assoc_delete_key function deletes a key given by k from the associative array a. If the
specified key does not exist in a, then this function has no effect.

See Also

3.4 (assoc_key exists), 3.2 (assoc_get keys)

3.2 assoc_get keys

Synopsis
Return all the key names of an Associative Array

Usage

String_Type[] assoc_get_keys (Assoc_Type a)

Description

This function returns all the key names of an associative array a as an ordinary one dimensional
array of strings. If the associative array contains no keys, an empty array will be returned.

See Also
3.3 (assoc__get values), 3.4 (assoc_key exists), 3.1 (assoc_delete key), 2.13 (length)

27

28 Chapter 3. Associative Array Functions

3.3 assoc_get values

Synopsis

Return all the values of an Associative Array

Usage
Array_Type assoc_get_keys (Assoc_Type a)

Description

This function returns all the values in the associative array a as an array of proper type. If
the associative array contains no keys, an empty array will be returned.

Example

Suppose that a is an associative array of type Integer_Type, i.e., it was created via
variable a = Assoc_Type[Integer_Typel;
Then the following may be used to print the values of the array in ascending order:

define print_sorted_values (a)

{
variable v = assoc_get_values (a);
variable i = array_sort (v);
v = v[i];
foreach (v)
{
variable vi = ();
() = fprintf (stdout, "Yd\n", vi);
}
}

See Also
3.2 (assoc_get_keys), 3.4 (assoc_key _exists), 3.1 (assoc_delete_key), 2.7 (array _sort)

3.4 assoc_key exists

Synopsis

Check to see whether a key exists in an Associative Array
Usage

Integer_Type assoc_key_exists (Assoc_Type a, String_Type k)
Description

The assoc_key_exists function may be used to determine whether or not a specified key k
exists in an associative array a. It returns 1 if the key exists, or 0 if it does not.

See Also
3.2 (assoc_get keys), 3.3 (assoc_get values), 3.1 (assoc_ delete key)

Chapter 4

Functions that Operate on Strings

4.1 count_char_occurrences

Synopsis
Count the number of occurrences of a character in a string

Usage

UInt_Type count_char_occurrences (str, ch)

Description

This function returns the number of times the specified character ch occurs in the string str.

Notes

If UTF-8 mode is in effect, then the character may correspond to more than one byte. In such
a case, the function returns the number of such byte-sequences in the string. To count actual
bytes, use the count_byte_occurrences function.

See Also

5.6 (count byte occurrences)

4.2 create delimited string

Synopsis

Concatenate strings using a delimiter

Usage
String Type create_delimited_string (delim, s_1, s_2, ..., s_n, n)
String_Type delim, s_1, ..., s_n
Int_Type n

29

30 Chapter 4. Functions that Operate on Strings

Description

create_delimited_string performs a concatenation operation on the n strings s_1, ...,s_n,
using the string delim as a delimiter. The resulting string is equivalent to one obtained via

s_1 + delim + s_2 + delim + ... + s_n
Example

create_delimited_string ("/", "user", "local", "bin", 3);

will produce "usr/local/bin".

Notes

New code should use the strjoin function, which performs a similar task.

See Also
4.23 (strjoin), 4.5 (is_list _element), 4.3 (extract_element), 4.16 (strchop), 4.14 (strcat)

4.3 extract element

Synopsis

Extract the nth element of a string with delimiters

Usage

String_Type extract_element (String_Type list, Int_Type nth, Int_Type delim)

Description

The extract_element function may be used to extract the nth substring of a string delimited
by the character given by the delim parameter. If the string contains fewer than the requested
substring, the function will return NULL. Substring elements are numbered from 0.

Example

The expression

extract_element ("element O, element 1, element 2", 1, ’,?)
returns the string " element 1", whereas

extract_element ("element O, element 1, element 2", 1, ’ ?)

returns "0,".

The following function may be used to compute the number of elements in the list:

define num_elements (list, delim)
{
variable nth = 0;
while (NULL != extract_element (list, nth, delim))
nth++;

return nth;

4.4. glob to regexp 31

Alternatively, the strchop function may be more useful. In fact, extract_element may be
expressed in terms of the function strchop as

define extract_element (list, nth, delim)

{
list = strchop(list, delim, 0);
if (nth >= length (1list))
return NULL;
else
return list[nth];
}

and the num_elements function used above may be recoded more simply as:

define num_elements (list, delim)
{
return length (strchop (length, delim, 0));

Notes

New code should make use of the List_Type object for lists.

See Also

4.5 (is_list_element), 4.6 (is_substr), 4.33 (strtok), 4.16 (strchop), 4.2 (cre-
ate_delimited string)

4.4 glob to regexp

Synopsis

Convert a globbing expression to a regular expression

Usage
String Type glob_to_regexp (String Type g)

Description

This function may be used to convert a so-called globbing expression to a regular expression.
A globbing expression is frequently used for matching filenames where ’?’ represents a single
character and ’*’ represents 0 or more characters.

Notes

The slsh program that is distributed with the S-Lang library includes a function called glob
that is a wrapper around glob_to_regexp and 1listdir. It returns a list of filenames matching
a globbing expression.

See Also
4.20 (string_match), 16.8 (listdir)

32 Chapter 4. Functions that Operate on Strings

4.5 is_list element

Synopsis

Test whether a delimited string contains a specific element

Usage

Int_Type is_list_element (String_Type list, String_Type elem, Int_Type delim)

Description

The is_list_element function may be used to determine whether or not a delimited list of
substring, list, contains the element elem. If elem is not an element of 1ist, the function
will return zero, otherwise, it returns 1 plus the matching element number.

Example

The expression
is_list_element ("element O, element 1, element 2", "O,", ’ ’);
returns 2 since "0," is element number one of the list (numbered from zero).

See Also
4.3 (extract _element), 4.6 (is_substr), 4.2 (create_delimited _string)

4.6 is_substr

Synopsis

Test for a specified substring within a string

Usage
Int_Type is_substr (String Type a, String_Type b)

Description
This function may be used to determine if a contains the string b. If it does not, the function
returns 0; otherwise it returns the position of the first occurrence of b in a expressed in terms
of characters, not bytes.

Notes
This function regards the first character of a string to be given by a position value of 1.
The distinction between characters and bytes is significant in UTF-8 mode.

This function has been vectorized in the sense that if an array of strings is passed for either
of the string-valued arguments, then a corresponding array of integers will be returned. If two
arrays are passed then the arrays must have the same length.

See Also
4.43 (substr), 4.20 (string match), 4.29 (strreplace)

4.7. make printable string 33

4.7 make printable string

Synopsis

Format a string suitable for parsing
Usage

String_Type make_printable_string(String_Type str)
Description

This function formats a string in such a way that it may be used as an argument to the eval
function. The resulting string is identical to str except that it is enclosed in double quotes
and the backslash, newline, control, and double quote characters are expanded.

See Also
19.4 (eval), 4.40 (str_quote_string)

4.8 Sprintf

Synopsis

Format objects into a string (deprecated)
Usage

String_Type Sprintf (String Type format, ..., Int_Type n)
Description

This function performs a similar task as the sprintf function but requires an additional

argument that specifies the number of items to format. For this reason, the sprintf function
should be used.

See Also
4.10 (sprintf), 12.12 (string), 4.11 (sscanf), 10.9 (vmessage)

4.9 strbskipchar

Synopsis

Get an index to the previous character in a UTF-8 encoded string
Usage

(pl, wch) = strbskipchar (str, pO [,skip_combining])
Description

This function moves backward from the 0-based byte-offset p0 in the string str to the previous

character in the string. It returns the byte-offset (p1 of the previous character and the decoded
character value at that byte-offset.

34

Chapter 4. Functions that Operate on Strings

The optional third argument specifies the handling of combining characters. If it is non-zero,
combining characters will be ignored, otherwise a combining character will not be treated
differently from other characters. The default is to ignore such characters.

If the byte-offset p0 corresponds to the end of the string (p0=0), then (p0,0) will be returned.
Otherwise if the byte-offset specifies a value that lies outside the string, an IndexError excep-
tion will be thrown. Finally, if the byte-offset corresponds to an illegally coded character, the
character returned will be the negative byte-value at the position.

See Also

4.31 (strskipchar), 4.30 (strskipbytes)

4.10 sprintf

Synopsis

Format objects into a string

Usage

String Type sprintf (String fmt, ...)

Description

The sprintf function formats a string from a variable number of arguments according to
according to the format specification string fmt.

The format string is a C library sprintf style format descriptor. Briefly, the format string
may consist of ordinary characters (not including the % character), which are copied into the
output string as-is, and conversion specification sequences introduced by the % character. The
number of additional arguments passed to the sprintf function must be consistent with the
number required by the format string.

The % character in the format string starts a conversion specification that indicates how an
object is to be formatted. Usually the percent character is followed immediately by a conversion
specification character. However, it may optionally be followed by flag characters, field width
characters, and precision modifiers, as described below.

The character immediately following the % character may be one or more of the following flag

characters:
- Use left-justification
Use alternate form for formatting.
0 Use 0 padding
+ Preceed a number by a plus or minus sign.

(space) Use a blank instead of a plus sign.

The flag characters (if any) may be followed by an optional field width specification string
represented by one or more digit characters. If the size of the formatted object is less than the
field width, it will be right-justified in the specified field width, unless the - flag was given, in
which case it will be left justified.

If the next character in the control sequence is a period, then it introduces a precision speci-
fication sequence. The precision is given by the digit characters following the period. If none

4.10.

sprintf 35

are given the precision is taken to be 0. The meaning of the precision specifier depends upon
the type of conversion: For integer conversions, it gives the minimum number digits to appear
in the output. For e and f floating point conversions, it gives the number of digits to appear
after the decimal point. For the g floating point conversion, it gives the maximum number
of significant digits to appear. Finally for the s and S conversions it specifies the maximum
number of characters to be copied to the output string.

The next character in the sequence may be a modifier that controls the size of object to be
formatted. It may consist of the following characters:

h This character is ignored in the current implementation.
1 The integer is be formatted as a long integer, or a

character as a wide character.

Finally the conversion specification sequence ends with the conversion specification character
that describes how the object is to be formatted:

] as a string

£ as a floating point number

e as a float using exponential form, e.g., 2.345e08
g format as e or f, depending upon its value

c as a character

b as a byte

h a literal percent character

as a signed decimal integer
as an unsigned decimal integer
as an octal integer
as hexadecimal
as a binary integer

convert object to a string and format accordingly

The S conversion specifier is a S-Lang extension which will cause the corresponding object
to be converted to a string using the string function, and then converted as s. formatted as
string. In fact, sprintf ("%S",x) is equivalent to sprintf ("%s",string(x)).

Example

sprintf ("%s","hello") ===> '"hello"

sprintf ("%s %s","hello", "world") ===> "hello world"
sprintf ("Agent 7%.3d",7) ===> "Agent 007"

sprintf ("}S",PI) ===> "3.141592653589793"
sprintf ("/g",PI) ===> "3.14159"

sprintf ("%.2g",PI) ===> "3, 1"

sprintf ("%.2e",PI) ===> "3.14e+00"

sprintf ("}.2f",PI) ===> "3.,14"

sprintf ("% 8.2f|",PI) ===> "] 3.14|"
sprintf ("|%-8.2f|",PI) ===> "|3.14 [
sprintf ("|%+8.2f|",PI) ===>"| +3.14]|"
sprintf("|%8B|", 21) ===> "| 10101]|"
sprintf("|%.8B|", 21) ===> "[00010101|"
sprintf (" |%#.8B|", 21) ===> "|0b00010101|"
sprintf ("%S",{1,2,3}) ===> "List_Type with 3 elements"
sprintf ("%4S",1+21i) ===> "(1 + 2i)"

36

Chapter 4. Functions that Operate on Strings

Notes

The set_float_format function controls the format for the S conversion of floating point
numbers.

See Also

12.12 (string), 4.11 (sscanf), 10.5 (message), 5.8 (pack), 9.39 (set float format)

4.11 sscanf

Synopsis

Parse a formatted string

Usage
Int_Type sscanf (s, fmt, rl, ... rN)
String_Type s, fmt;
Ref_Type rl, ..., =N
Description

The sscanf function parses the string s according to the format fmt and sets the variables
whose references are given by r1i, ..., rN. The function returns the number of references assigned,
or throws an exception upon error.

The format string fmt consists of ordinary characters and conversion specifiers. A conversion
specifier begins with the special character % and is described more fully below. A white space
character in the format string matches any amount of whitespace in the input string. Parsing
of the format string stops whenever a match fails.

The % character is used to denote a conversion specifier whose general form is given by
%[*] [width] [type]format where the brackets indicate optional items. If * is present, then
the conversion will be performed but no assignment to a reference will be made. The width
specifier specifies the maximum field width to use for the conversion. The type modifier is
used to indicate the size of the object, e.g., a short integer, as follows.

If type is given as the character h, then if the format conversion is for an integer (dioux),
the object assigned will be a short integer. If type is 1, then the conversion will be to a long
integer for integer conversions, or to a double precision floating point number for floating point
conversions.

The format specifier is a character that specifies the conversion:

% Matches a literal percent character. No assignment is
performed.

d Matches a signed decimal integer.

D Matches a long decimal integer (equiv to ‘ld’)

u Matches an unsigned decimal integer

U Matches an unsigned long decimal integer (equiv to ‘lu’)

i Matches either a hexadecimal integer, decimal integer, or

octal integer.

I Equivalent to ‘1i’.

4.12. strbytelen

37

X Matches
Matches
e,f,g Matches
E,F,G Matches
Matches
c Matches

a
a
a
a
a

hexadecimal integer.

long hexadecimal integer (same as ‘lx’).

decimal floating point number (Float_Type).

double precision floating point number, same as ‘1f’.

string of non-whitespace characters (String_Type).

one character. If width is given, width

characters are matched.

n Assigns the number of characters scanned so far.

[...] Matches zero or more characters from the set of characters

enclosed by the square brackets. If ’~’ is given as the

first character, then the complement set is matched.

Example

Suppose that s is "Coffee:

(3,4,12.4)". Then

n = sscanf (s, "4[a-zA-Z]: (%d,%d,%1f)", &item, &x, &y, &z);

will set n to 4, item to "Coffee", x to 3, y to 4, and z to the double precision number 12.4.

However,

n = sscanf (s, "hs: (%d,%d,%1f)", &item, &x, &y, &z);

will set n to 1, item to "Coffee:" and the remaining variables will not be assigned.

See Also

4.10 (sprintf), 5.11 (unpack), 12.12 (string), 12.1 (atof), 12.8 (int), 12.9 (integer), 4.22

(string matches)

4.12 strbytelen

Synopsis

Get the number of bytes in a string

Usage

Int_Type strbytelen (String_Type s)

Description

This function returns the number of bytes in a string. In UTF-8 mode, this value is generally
different from the number of characters in a string. For the latter information, the strlen or

strcharlen functions should be used.

Notes

This function has been vectorized in the sense that if an array of strings is passed to the

function, then a corresponding array of integers will be returned.

See Also

4.24 (strlen), 4.15 (strcharlen), 2.13 (length)

38 Chapter 4. Functions that Operate on Strings

4.13 strbytesub

Synopsis
Replace a byte with another in a string.

Usage

String Type strsub (String_Type s, Int_Type pos, UChar_Type b)

Description

The strbytesub function may be be used to substitute the byte b for the byte at byte position
pos of the string s. The resulting string is returned.

Notes

The first byte in the string s is specified by pos equal to 1. This function uses byte semantics,
not character semantics.

See Also
4.32 (strsub), 4.6 (is_substr), 4.29 (strreplace), 4.12 (strbytelen)

4.14 strcat

Synopsis

Concatenate strings

Usage

String_Type strcat (String_Type a_1l, ..., String Type a_N)

Description

The strcat function concatenates its N string arguments a_1, ... a_N together and returns
the result.

Example
strcat ("Hello", " ", "World");

produces the string "Hello World".

Notes

This function is equivalent to the binary operation a_1+...+a_N. However, strcat is much
faster making it the preferred method to concatenate strings.

See Also
4.10 (sprintf), 4.23 (strjoin)

4.15. strcharlen 39

4.15 strcharlen

Synopsis

Get the number of characters in a string including combining characters

Usage
Int_Type strcharlen (String Type s)

Description

The strcharlen function returns the number of characters in a string. If the string contains
combining characters, then they are also counted. Use the strlen function to obtain the
character count ignoring combining characters.

Notes

This function has been vectorized in the sense that if an array of strings is passed to the
function, then a corresponding array of integers will be returned.

See Also
4.24 (strlen), 4.12 (strbytelen)

4.16 strchop

Synopsis

Chop or split a string into substrings.

Usage
String Typel] strchop (String_Type str, Int_Type delim, Int_Type quote)

Description

The strchop function may be used to split-up a string str that consists of substrings delimited
by the character specified by delim. If the integer quote is non-zero, it will be taken as a
quote character for the delimiter. The function returns the substrings as an array.

Example

The following function illustrates how to sort a comma separated list of strings:

define sort_string_list (a)
{

variable i, b, c;

b = strchop (a, ’,’, 0);

array_sort (b);

o e
1]

b[il; % rearrange

% Convert array back into comma separated form

return strjoin (b, ",");

40 Chapter 4. Functions that Operate on Strings

See Also
4.17 (strchopr), 4.23 (strjoin), 4.33 (strtok)

4.17 strchopr

Synopsis
Chop or split a string into substrings.

Usage
String_Type[] strchopr (String_Type str, String Type delim, String_Type
quote)

Description

This routine performs exactly the same function as strchop except that it returns the sub-
strings in the reverse order. See the documentation for strchop for more information.

See Also
4.16 (strchop), 4.33 (strtok), 4.23 (strjoin)

4.18 strcmp

Synopsis
Compare two strings
Usage
Int_Type strcmp (String Type a, String_Type b)

Description
The strcmp function may be used to perform a case-sensitive string comparison, in the lexi-
cographic sense, on strings a and b. It returns 0 if the strings are identical, a negative integer
if a is less than b, or a positive integer if a is greater than b.

Example

The strup function may be used to perform a case-insensitive string comparison:

define case_insensitive_strcmp (a, b)
{

return strcmp (strup(a), strup(b));
}

Notes
One may also use one of the binary comparison operators, e.g., a > b.

This function has been vectorized in the sense that if an array of strings is passed to the
function, then a corresponding array of integers will be returned.

See Also
4.38 (strup), 4.28 (strncmp)

4.19. strcompress 41

4.19 strcompress

Synopsis

Remove excess whitespace characters from a string

Usage

String_Type strcompress (String Type s, String_Type white)

Description

The strcompress function compresses the string s by replacing a sequence of one or more
characters from the set white by the first character of white. In addition, it also removes all
leading and trailing characters from s that are part of white.

Example

The expression
strcompress (",;apple,,cherry;,banana", ",;");
returns the string "apple,cherry,banana".

Notes

This function has been vectorized in the sense that if an array of strings is passed as the
first argument then a corresponding array of strings will be returned. Array values are not
supported for the remaining arguments.

See Also
4.35 (strtrim), 4.34 (strtrans), 4.39 (str_delete chars)

4.20 string match

Synopsis

Match a string against a regular expression

Usage
Int_Type string _match(String_Type str, String Type pat [,Int_Type pos])

Description

The string_match function returns zero if str does not match the regular expression specified
by pat. This function performs the match starting at the first byte of the string. The optional
pos argument may be used to specify a different byte offset (numbered from 1). This function
returns the position in bytes (numbered from 1) of the start of the match in str. The exact
substring matched may be found using string_match_nth.

Notes

Positions in the string are specified using byte-offsets not character offsets. The value returned
by this function is measured from the beginning of the string str.

42 Chapter 4. Functions that Operate on Strings

The function is not yet UTF-8 aware. If possible, consider using the pcre module for better,
more sophisticated regular expressions.

The pos argument was made optional in version 2.2.3.

See Also

4.22 (string_matches), 4.21 (string _match nth), 4.18 (strcmp), 4.28 (strncmp)

4.21 string match nth

Synopsis

Get the result of the last call to string match

Usage

(Int_Type pos, Int_Type len) = string _match_nth(Int_Type nth)

Description

The string_match_nth function returns two integers describing the result of the last call to
string_match. It returns both the zero-based byte-position of the nth submatch and the
length of the match.

By convention, nth equal to zero means the entire match. Otherwise, nth must be an integer
with a value 1 through 9, and refers to the set of characters matched by the nth regular
expression enclosed by the pairs \ (, \).

Example

Consider:

variable matched, pos, len;
matched = string_match("hello world", "\([a-z]+\) \([a-z]+\)"R, 1);
if (matched)

(pos, len) = string_match_nth(2);

This will set matched to 1 since a match will be found at the first byte position, pos to 6 since
w is offset 6 bytes from the beginning of the string, and len to 5 since "world" is 5 bytes long.
Notes

The position offset is not affected by the value of the offset parameter to the string_match
function. For example, if the value of the last parameter to the string_match function had
been 3, pos would still have been set to 6.

The string_matches function may be used as an alternative to string_match_nth.

See Also

4.20 (string_match), 4.22 (string_matches)

4.22. string matches 43

4.22 string matches

Synopsis

Match a string against a regular expression and return the matches

Usage

String Typel] string matches(String_Type str, String Type pat [,Int_Type
pos]l)

Description

The string matches function combines the functionality of string match and
string _match_nth. Like string_match, it matches the string str against the regular
expression pat. If the string does not match the pattern the function will return NULL.
Otherwise, the function will return an array of strings whose ith element is the string that
corresponds to the return value of the string_match_nth function.

Example
strs = string_matches ("p0.5keV_27deg.dat",
"p\([0-9.1+\)keV_\([0-9.]1+\)deg\.dat"R, 1);
% ==> strs[0] = "pO.bkeV_27deg.dat"
% strs[1] = "0.5"
% strs[2] = "27"
strs = string_matches ("q0.5keV_27deg.dat",
"p\([0-9.1+\)keV_\([0-9.1+\)deg\.dat"R);
% ==> strs = NULL
Notes

The function is not yet UTF-8 aware. If possible, consider using the pcre module for better,
more sophisticated regular expressions.

The pos argument was made optional in version 2.2.3.

See Also
4.20 (string_match), 4.21 (string_match_nth), 4.18 (strcmp), 4.28 (strncmp)

4.23 strjoin

Synopsis
Concatenate elements of a string array
Usage
String Type strjoin (Array_Type a [, String Type delim])

Description

The strjoin function operates on an array of strings by joining successive elements together
separated with the optional delimiter delim. If delim is not specified, then empty string ""
will be used resulting in a concatenation of the elements.

44 Chapter 4. Functions that Operate on Strings

Example

Suppose that
days = [Ils.unll R llMonll s llTuell . Ilwedll R lIThull . llFrill . Ilsatll R llsunll] ;

Then strjoin (days,"+") will produce "Sun+Mon+Tue+Wed+Thu+Fri+Sat+Sun". Similarly,
strjoin ([uu s nn s " ll] s IIXII) will produce nyxx".

See Also
4.16 (strchop), 4.14 (strcat)

4.24 strlen

Synopsis
Compute the length of a string

Usage
Int_Type strlen (String_Type a)

Description

The strlen function may be used to compute the character length of a string ignoring the
presence of combining characters. The strcharlen function may be used to count combining
characters as distinct characters. For byte-semantics, use the strbytelen function.

Example

After execution of
variable len = strlen ("hello");
len will have a value of 5.

Notes

This function has been vectorized in the sense that if an array of strings is passed to the
function, then a corresponding array of integers will be returned.

See Also
4.12 (strbytelen), 4.15 (strcharlen), 5.5 (bstrlen), 2.13 (length), 4.43 (substr)

4.25 strlow
Synopsis
Convert a string to lowercase

Usage
String Type strlow (String_Type s)

4.26. strnbytecmp 45

Description

The strlow function takes a string s and returns another string identical to s except that all
upper case characters that are contained in s are converted converted to lower case.

Example

The function

define Strcmp (a, b)

{
return strcmp (strlow (a), strlow (b));
}
performs a case-insensitive comparison operation of two strings by converting them to lower
case first.
Notes

This function has been vectorized in the sense that if an array of strings is passed to the
function, then a corresponding array of strings will be returned.

See Also
4.38 (strup), 12.13 (tolower), 4.18 (strcmp), 4.35 (strtrim), 12.6 (define_ case)

4.26 strnbytecmp

Synopsis
Compare the first n bytes of two strings

Usage
Int_Type strnbytecmp (String_ Type a, String Type b, Int_Type n)

Description

This function compares the first n bytes of the strings a and b. See the documentation for
strcmp for information about the return value.

Notes

This function has been vectorized in the sense that if an array of strings is passed for either
of the string-valued arguments, then a corresponding array of integers will be returned. If two
arrays are passed then the arrays must have the same length.

See Also
4.28 (strncmp), 4.27 (strncharcmp), 4.18 (stremp)

4.27 strncharcmp

Synopsis

Compare the first n characters of two strings

46 Chapter 4. Functions that Operate on Strings

Usage
Int_Type strncharcmp (String_ Type a, String Type b, Int_Type n)

Description

This function compares the first n characters of the strings a and b counting combining char-
acters as distinct characters. See the documentation for strcmp for information about the
return value.

Notes

This function has been vectorized in the sense that if an array of strings is passed for either
of the string-valued arguments, then a corresponding array of integers will be returned. If two
arrays are passed then the arrays must have the same length.

See Also
4.28 (strncmp), 4.26 (strnbytecmp), 4.18 (stremp)

4.28 strncmp

Synopsis

Compare the first few characters of two strings

Usage

Int_Type strncmp (String Type a, String_Type b, Int_Type n)

Description

This function behaves like strcmp except that it compares only the first n characters in the
strings a and b. See the documentation for strcmp for information about the return value.

In counting characters, combining characters are not counted, although they are used in the
comparison. Use the strncharcmp function if you want combining characters to be included
in the character count. The strnbytecmp function should be used to compare bytes.

Example
The expression
strncmp ("apple", "appliance", 3);
will return zero since the first three characters match.
Notes

This function uses character semantics.

This function has been vectorized in the sense that if an array of strings is passed for either
of the string-valued arguments, then a corresponding array of integers will be returned. If two
arrays are passed then the arrays must have the same length.

See Also
4.18 (strcmp), 4.24 (strlen), 4.27 (strncharcmp), 4.26 (strnbytecmp)

4.29. strreplace 47

4.29 strreplace

Synopsis

Replace one or more substrings

Usage

(new,n) = strreplace(a, b, c, max_n)

Usage

new = strreplace(a, b, c)

Description

The strreplace function may be used to replace one or more occurrences of b in a with c.
This function supports two calling interfaces.

The first form may be used to replace a specified number of substrings. If max_n is positive,
then the first max_n occurrences of b in a will be replaced. Otherwise, if max_n is negative,
then the last abs(max_n) occurrences will be replaced. The function returns the resulting
string and an integer indicating how many replacements were made.

The second calling form may be used to replace all occurrences of b in a with c¢. In this case,
only the resulting string will be returned.
Example

The following function illustrates how strreplace may be used to remove all occurrences of
a specified substring:

define delete_substrings (a, b)
{

return strreplace (a, b, "");

See Also
4.6 (is_substr), 4.32 (strsub), 4.35 (strtrim), 4.34 (strtrans), 4.39 (str_delete chars)

4.30 strskipbytes

Synopsis

Skip a range of bytes in a byte string

Usage
Int_Type strskipbytes (str, range [nO [,nmax]])
String_Type s;

String_Type range;
Int_Type n0O, nmax;

48 Chapter 4. Functions that Operate on Strings

Description

This function skips over a range of bytes in a string str. The byte range to be skipped is
specified by the range parameter. Optional start (n0) and stop (nmax) (O-based) parameters
may be used to specifiy the part of the input string to be processed. The function returns a
0-based offset from the beginning of the string where processing stopped.

See the documentation for the strtrans function for the format of the range parameter.

See Also
4.31 (strskipchar), 4.9 (strbskipchar), 4.34 (strtrans)

4.31 strskipchar

Synopsis

Get an index to the next character in a UTF-8 encoded string

Usage

(pl, wch) = strskipchar (str, pO [,skip_combining])

Description

This function decodes the character at the 0-based byte-offset pO in the string str. It returns
the byte-offset (p1 of the next character in the string and the decoded character at byte-offset

pO.
The optional third argument specifies the handling of combining characters. If it is non-zero,

combining characters will be ignored, otherwise a combining character will not be treated
differently from other characters. The default is to ignore such characters.

If the byte-offset pO corresponds to the end of the string, then (p0,0) will be returned. Oth-
erwise if the byte-offset specifies a value that lies outside the string, an IndexError exception
will be thrown. Finally, if the byte-offset corresponds to an illegally coded character, the
character returned will be the negative byte-value at the position.

Example

The following is an example of a function that skips alphanumeric characters and returns the
new byte-offset.

private define skip_word_chars (line, p)

{
variable pl = p, ch;
do
{
P = pl;
(p1, ch) = strskipchar (line, p, 1);
}

while (isalnum(ch));

return p;

4.32. strsub 49

Notes

In non-UTF-8 mode (_slang_utf8_ok=0), this function is equivalent to:

define strskipchar (s, p)
{
if ((p < 0) Il (p > strlen(s)))
throw IndexError;
if (p == strlen(s))
return (p, s[pl)
return (p+1, s[pl);
}

It is important to understand that the above code relies upon byte-semantics, which are invalid
for multi-byte characters.

See Also
4.9 (strbskipchar), 4.30 (strskipbytes)

4.32 strsub

Synopsis

Replace a character with another in a string.

Usage

String_Type strsub (String_Type s, Int_Type pos, Int_Type ch)

Description
The strsub function may be used to substitute the character ch for the character at character
position pos of the string s. The resulting string is returned.

Example

define replace_spaces_with_comma (s)

{
variable n;
while (n = is_substr (s, " "), n) s = strsub (s, n, ’,’);
return s;

}

For uses such as this, the strtrans function is a better choice.

Notes

The first character in the string s is specified by pos equal to 1. This function uses character
semantics, not byte semantics.

See Also
4.6 (is_substr), 4.29 (strreplace), 4.24 (strlen)

30

Chapter 4. Functions that Operate on Strings

4.33 strtok

Synopsis

Extract tokens from a string

Usage

String_Typel[] strtok (String Type str [,String_Type white])

Description

strtok breaks the string str into a series of tokens and returns them as an array of strings.

If the second parameter white is present, then it specifies the set of characters that are to

be regarded as whitespace when extracting the tokens, and may consist of the whitespace

characters or a range of such characters. If the first character of white is ’"’, then the

whitespace characters consist of all characters except those in white. For example, if white

is " \t\n,;.

is given by

" then those characters specify the whitespace characters. However, if white
"~a-zA-Z0-9_", then any character is a whitespace character except those in

the ranges a-z, A-Z, 0-9, and the underscore character. To specify the hyphen character as a

whitespace character, then it should be the first character of the whitespace string. In addition

to ranges, the whitespace specifier may also include character classes:

\w
\a
\s
\1
\u
\d
\\
\~

matches a unicode "word" character, taken to be alphanumeric.
alphabetic character, excluding digits

matches whitespace

matches lowercase

matches uppercase

matches a digit

matches a backslash

matches a ~ character

If the second parameter is not present, then it defaults to "\s".

Example

The following example may be used to count the words in a text file:

define count_words (file)

{

variable fp, line, count;

fp = fopen (file, "r");
if (fp == NULL) return -1;

count = 0;
while (-1 != fgets (&line, fp))
{
line = strtok (line, "~\\a");
count += length (line);
}
() = fclose (fp);

return count;

4.34. strtrans

51

Here a word was assumed to consist only of alphabetic characters.

See Also

4.16 (strchop), 4.19 (strcompress), 4.23 (strjoin)

4.34 strtrans

Synopsis

Replace characters in a string

Usage

String_Type strtrans (str, old_set, new_set)

String_Type str, old_set, new_set;

Description

The strtrans function may be used to replace all the characters from the set old_set with

the corresponding characters from new_set in the string str. If new_set is empty, then the

characters in old_set will be removed from str.

If new_set is not empty, then old_set and new_set must be commensurate. Each set may

consist of character ranges such as A-Z and character classes:

\,
\7
\\
\~
\a
\c
\d
\g
\1
\p
\s
\u
\w
\x

If the first character

Example
str
str
str
Notes

matches
matches
matches
matches
matches
matches
matches
matches
matches
matches
matches
matches
matches

matches

a punctuation character

any 7bit ascii character

a backslash

the = character

an alphabetic character, excluding digits
a control character

a digit

a graphic character

lowercase

a printable character

whitespace

uppercase

a unicode "word" character, taken to be alphanumeric.
hex digit (a-fA-F0-9)

of a set is ~ then the set is taken to be the complement set.

= strtrans (str, "\\u", "\\1"); % lower-case str

= strtrans (str, "~0-9", " "); % Replace anything but 0-9 by space

= strtrans (str, "\\"0-9", " "); J Replace ’~’ and 0-9 by a space

This function has been vectorized in the sense that if an array of strings is passed as the

first argument then a corresponding array of strings will be returned. Array values are not

supported for the remaining arguments.

52 Chapter 4. Functions that Operate on Strings

See Also
4.29 (strreplace), 4.35 (strtrim), 4.38 (strup), 4.25 (strlow)

4.35 strtrim

Synopsis

Remove whitespace from the ends of a string

Usage

String Type strtrim (String Type s [,String Type w])

Description

The strtrim function removes all leading and trailing whitespace characters from the string s
and returns the result. The optional second parameter specifies the set of whitespace charac-
ters. If the argument is not present, then the set defaults to "\s". The whitespace specification
may consist of character ranges such as A-Z and character classes:

\w matches a unicode "word" character, taken to be alphanumeric.
\a alphabetic character, excluding digits

\s matches whitespace

\1l matches lowercase

\u matches uppercase

\d matches a digit

\\ matches a backslash

\~ matches a character

If the first character of a set is ~ then the set is taken to be the complement set.

Notes

This function has been vectorized in the sense that if the first argument is an array of strings,
then a corresponding array of strings will be returned. An array value for the optional whites-
pace argument is not supported.

See Also
4.36 (strtrim_beg), 4.37 (strtrim__end), 4.19 (strcompress)

4.36 strtrim_beg
Synopsis
Remove leading whitespace from a string

Usage

String Type strtrim_beg (String Type s [,String Type w])

4.37. strtrim_end 53

Description

The strtrim_beg function removes all leading whitespace characters from the string s and
returns the result. The optional second parameter specifies the set of whitespace characters.
See the documentation for the strtrim function form more information about the whitespace
parameter.

Notes

This function has been vectorized in the sense that if the first argument is an array of strings,
then a corresponding array of strings will be returned. An array value for the optional whites-
pace argument is not supported.

See Also
4.35 (strtrim), 4.37 (strtrim _end), 4.19 (strcompress)

4.37 strtrim_end

Synopsis

Remove trailing whitespace from a string

Usage

String Type strtrim_end (String Type s [,String Type w])

Description

The strtrim_end function removes all trailing whitespace characters from the string s and
returns the result. The optional second parameter specifies the set of whitespace characters.
See the documentation for the strtrim function form more information about the whitespace
parameter.

Notes

This function has been vectorized in the sense that if the first argument is an array of strings,
then a corresponding array of strings will be returned. An array value for the optional whites-
pace argument is not supported.

See Also
4.35 (strtrim), 4.36 (strtrim_beg), 4.19 (strcompress)

4.38 strup
Synopsis
Convert a string to uppercase

Usage
String Type strup (String Type s)

54 Chapter 4. Functions that Operate on Strings

Description

The strup function takes a string s and returns another string identical to s except that all
lower case characters that contained in s are converted to upper case.

Example

The function

define Strcmp (a, b)

{
return strcmp (strup (a), strup (b));
}
performs a case-insensitive comparison operation of two strings by converting them to upper
case first.
Notes

This function has been vectorized in the sense that if an array of strings is passed to the
function, then a corresponding array of strings will be returned.

See Also
4.25 (strlow), 12.14 (toupper), 4.18 (strcmp), 4.35 (strtrim), 12.6 (define _case), 4.34 (strtrans)

4.39 str delete chars

Synopsis

Delete characters from a string

Usage
String Type str_delete_chars (String_Type str [, String_Type del_set])

Description

This function may be used to delete the set of characters specified by the optional argument
del_set from the string str. If del_set is not given, "\s" will be used. The modified string
is returned.

The set of characters to be deleted may include ranges such as A-Z and characters classes:

\w matches a unicode "word" character, taken to be alphanumeric.
\a alphabetic character, excluding digits

\s matches whitespace

\1l matches lowercase

\u matches uppercase

\d matches a digit

\\ matches a backslash

\~ matches a character

If the first character of del_set is ~, then the set is taken to be the complement of the
remaining string.

Example

4.40. str quote string 55

str = str_delete_chars (str, ""A-Za-z");

will remove all characters except A-Z and a-z from str. Similarly,
str = str_delete_chars (str, "~\\a");
will remove all but the alphabetic characters.

Notes

This function has been vectorized in the sense that if an array of strings is passed as the
first argument then a corresponding array of strings will be returned. Array values are not
supported for the remaining arguments.

See Also
4.34 (strtrans), 4.29 (strreplace), 4.19 (strcompress)

4.40 str quote string

Synopsis
Escape characters in a string.
Usage

String Type str_quote_string(String Type str, String Type qlis, Int_Type
quote)

Description

The str_quote_string returns a string identical to str except that all characters contained
in the string qlis are escaped with the quote character, including the quote character itself.
This function is useful for making a string that can be used in a regular expression.

Example

Execution of the statements

node = "Is it [the coat] really worth $1007";
tag = str_quote_string (node, "\\"$[I*.+7", *\\?);

will result in tag having the value:
Is it \[the coat\] really worth \$100\?

See Also
4.42 (str_uncomment_string), 4.7 (make_printable_ string)

4.41 str_replace

Synopsis
Replace a substring of a string (deprecated)

56 Chapter 4. Functions that Operate on Strings

Usage

Int_Type str_replace (String _Type a, String_Type b, String Type c)

Description

The str_replace function replaces the first occurrence of b in a with ¢ and returns an integer
that indicates whether a replacement was made. If b does not occur in a, zero is returned.
However, if b occurs in a, a non-zero integer is returned as well as the new string resulting
from the replacement.

Notes

This function has been superceded by strreplace. It should no longer be used.

See Also
4.29 (strreplace)

4.42 str uncomment string

Synopsis

Remove comments from a string

Usage
String Type str_uncomment_string(String Type s, String_ Type beg, String_Type
end)

Description

This function may be used to remove simple forms of comments from a string s. The parame-
ters, beg and end, are strings of equal length whose corresponding characters specify the begin
and end comment characters, respectively. It returns the uncommented string.

Example

The expression
str_uncomment_string ("Hello (testing) ’example’ World", "’(", "’)")
returns the string "Hello World".

Notes

This routine does not handle multi-character comment delimiters and it assumes that com-
ments are not nested.

See Also

4.40 (str__quote _string), 4.39 (str__delete chars), 4.34 (strtrans)

4.43. substr 57

4.43 substr

Synopsis

Extract a substring from a string
Usage

String_Type substr (String_Type s, Int_Type n, Int_Type len)
Description

The substr function returns a substring with character length len of the string s beginning
at the character position n. If 1len is -1, the entire length of the string s will be used for len.
The first character of s is given by n equal to 1.

Example
substr ("To be or not to be", 7, 5);

returns "or no"

Notes

This function assumes character semantics and not byte semantics. Use the substrbytes
function to extract bytes from a string.

See Also
4.6 (is_substr), 4.44 (substrbytes), 4.24 (strlen)

4.44 substrbytes

Synopsis

Extract a byte sequence from a string
Usage

String Type substrbytes (String Type s, Int_Type n, Int_Type len)
Description

The substrbytes function returns a substring with byte length len of the string s beginning
at the byte position n, counting from 1. If len is -1, the entire byte-length of the string s will
be used for len. The first byte of s is given by n equal to 1.

Example

substrbytes ("To be or not to be", 7, 5);

returns "or no"

Notes

In many cases it is more convenient to use array indexing rather than the substrbytes func-
tion. In fact substrbytes(s,i+1,-1) is equivalent to s[[i:]].

The function substr may be used if character semantics are desired.

58

Chapter 4. Functions that Operate on Strings

See Also
4.43 (substr), 4.12 (strbytelen)

Chapter 5

Functions that Operate on Binary
Strings

5.1 array to_bstring

Synopsis
Convert an array to a binary string

Usage
BString_Type array_to_bstring (Array_Type a)

Description

The array_to_bstring function returns the elements of an array a as a binary string.

See Also
5.2 (bstring_to_array), 2.11 (init_ char array)

5.2 bstring to_ array

Synopsis
Convert a binary string to an array of bytes

Usage
UChar_Typel[] bstring to_array (BString_Type b)

Description

The bstring_to_array function returns an array of unsigned characters whose elements cor-
respond to the bytes in the binary string.

See Also
5.1 (array _to_bstring), 2.11 (init_ char _array)

99

60 Chapter 5. Functions that Operate on Binary Strings

5.3 bstrcat

Synopsis

Concatenate binary strings

Usage
String_Type bstrcat (BString Type a_1, ..., BString_ Type a_N)
Description
The bstrcat function concatenates its N binary string arguments a_1, ... a_N together and

returns the result.

Notes

This function will produce a result that is identical to that of strcat if the input strings do
not contain null characters.

See Also
4.14 (strcat), 5.4 (bstrjoin)

5.4 bstrjoin

Synopsis

Concatenate elements of an array of BString Type objects

Usage
String_Type bstrjoin (Array_Type a [, BString Type delim])

Description

The bstrjoin function operates on an array of binary strings by joining successive elements
together separated with the optional delimiter delim. If delim is not specified, then empty
string "" will be used resulting in a concatenation of the elements.

See Also
5.3 (bstrcat), 4.23 (strjoin)

5.5 bstrlen

Synopsis

Get the length of a binary string
Usage

UInt_Type bstrlen (BString Type s)

Description

The bstrlen function may be used to obtain the length of a binary string. A binary string
differs from an ordinary string (a C string) in that a binary string may include null characters.

5.6. count byte occurrences 61

Example
s = "hello\0";
len = bstrlen (s); % ==> len = 6
len = strlen (s); % ==> len = 5
See Also

4.24 (strlen), 2.13 (length)

5.6 count byte occurrences

Synopsis

Count the number of occurrences of a byte in a binary string
Usage

UInt_Type count_byte_occurrences (bstring, byte)

Description

This function returns the number of times the specified byte occurs in the binary string bstr.

Notes
This function uses byte-semantics. If character semantics are desired, use the
count_char_occurrences function.

See Also

4.1 (count _char_occurrences)

5.7 is_substrbytes

Synopsis

test if a binary string contains a series of bytes

Usage
Int_Type is_substrbytes (a, b [,ofs])

Description

This function may be used to see if the binary string a contains the byte-sequence given by
the binary string b. If b is contained in a, then a ones-based offset of the first occurance of b
in a is returned. Otherwise, the function will return 0 to indicate that a does not contain b.

An optional 1-based parameter ofs may be passed to the function to indicate where in a the
search is to start. The returned value is still a 1-based offset from the beginning of a where b
is located.

Notes

Support for the optional argument was added in version 2.3.0.

See Also

4.6 (is_substr), 5.6 (count byte occurrences)

62 Chapter 5. Functions that Operate on Binary Strings

5.8 pack

Synopsis

Pack objects into a binary string

Usage
BString Type pack (String Type fmt, ...)

Description

The pack function combines zero or more objects (represented by the ellipses above) into a
binary string according to the format string fmt.

The format string consists of one or more data-type specification characters defined by the
following table:

signed byte
unsigned byte

short

unsigned short

int

unsigned int

long

unsigned long

long long

unsigned long long
16 bit int

16 bit unsigned int
32 bit int

32 bit unsigned int
64 bit int

64 bit unsigned int
float

double

32 bit float

64 bit float
character string, null padded
character string, space padded

character string, null padded

¥ N »nm O maoaHtoo NN gu 28 0 HHRPP TP QO

a null pad character

A decimal length specifier may follow the data-type specifier. With the exception of the s and
S specifiers, the length specifier indicates how many objects of that data type are to be packed
or unpacked from the string. When used with the s, S, or z specifiers, it indicates the field
width to be used. If the length specifier is not present, the length defaults to one.

When packing, unlike the s specifier, the z specifier guarantees that at least one null byte will
be written even if the field has to be truncated to do so.

With the exception of ¢, C, s, S, and x, each of these may be prefixed by a character that
indicates the byte-order of the object:

> big-endian order (network order)

5.9. pad pack format 63

< little-endian order

= native byte-order

The default is to use native byte order.

When unpacking via the unpack function, if the length specifier is greater than one, then an
array of that length will be returned. In addition, trailing whitespace and null characters are
stripped when unpacking an object given by the S specifier. Trailing null characters will be
stripped from an object represented by the z specifier. No such stripping is performed by the

s specifier.

Example
a = pack ("cc", ’A’, ’B’); % ==> a = "AB";
a = pack ("c2", °A’, °B’); % ==> a = "AB";
a = pack ("xxcxxc", ’A’, ’B’); % ==> a = "\O\OA\O\OB";
a = pack ("h2", ’A’, ’B’); % ==> a = "\OA\OB" or "\OB\OA"
a = pack (">h2", ’A’, ’B’); % ==> a = "\0\xA\O\xB"
a = pack ("<h2", ’A’, ’B’); % ==> a = "\OB\OA"
a = pack ("s4", "AB", "CD"); % ==> a = "AB\O\O"
a = pack ("s4s2", "AB", "CD"); % ==> a = "AB\O\OCD"
a = pack ("S4", "AB", "CD"); % ==> a = "AB "
a = pack ("S4S52", "AB", "CD"); % ==>a = "AB CD"
a = pack ("z4", "AB"); % ==> a = "AB\0O\O"
a = pack ("s4", "ABCDEFG"); % ==> a = "ABCD"
a = pack ("z4", "ABCDEFG"); % ==> a = "ABC\O"

See Also

5.11 (unpack), 5.10 (sizeof pack), 5.9 (pad pack format), 4.10 (sprintf)

5.9 pad pack format

Synopsis
Add padding to a pack format

Usage

BString_Type pad_pack_format (String_Type fmt)

Description

The pad_pack_format function may be used to add the appropriate padding characters to the
format fmt such that the data types specified by the format will be properly aligned on word
boundaries. This is especially important when reading or writing files that assume the native
alignment.

See Also
5.8 (pack), 5.11 (unpack), 5.10 (sizeof _pack)

64 Chapter 5. Functions that Operate on Binary Strings

5.10 sizeof pack

Synopsis

Compute the size implied by a pack format string

Usage
UInt_Type sizeof_pack (String_Type fmt)

Description
The sizeof_pack function returns the size of the binary string represented by the format
string fmt. This information may be needed when reading a structure from a file.

See Also
5.8 (pack), 5.11 (unpack), 5.9 (pad_pack_format)

5.11 unpack

Synopsis
Unpack Objects from a Binary String

Usage
(...) = unpack (String_Type fmt, BString_Type s)

Description

The unpack function unpacks objects from a binary string s according to the format fmt
and returns the objects to the stack in the order in which they were unpacked. See the
documentation of the pack function for details about the format string.

Example
(x,y) = unpack ("cc", "AB"); h==>x="A,y="B
x = unpack ("c2", "AB"); % ==>x=[’A?, ’B’]
x = unpack ("x<H", "\O\xAB\xCD"); % ==> x = 0xCDABuh
x = unpack ("xxs4", "a b c\0d e £"); % ==> x = "b c\0"
x = unpack ("xxS4", "a b c\0d e £"); % ==>x = "b c"

See Also

5.8 (pack), 5.10 (sizeof _pack), 5.9 (pad_pack_format)

Chapter 6

Functions that Manipulate Structures

6.1

__add_ binary

Synopsis

Extend a binary operation to a user defined type

Usage

__add_binary(op, return_type, binary_funct, lhs_type, rhs_type)

String_Type op;
Ref_Type binary_funct;
DataType_Type return_type, lhs_type, rhs_type;

Description

The __add_binary function is used to specify a function to be called when a binary operation
takes place between specified data types. The first parameter indicates the binary operator
and must be one of the following:

n+n’ n_n’ n*n’ n/u’ n==n’ n!=n’ u>n’ u>=u’ n<u’ n<=n’ nAn’

"or", "and", n&n’ nln’ "XOI", ”Shl", "shr", "mod"

The second parameter (binary_funct) specifies the function to be called when the binary
function takes place between the types lhs_type and rhs_type. The return_type parameter
stipulates the return values of the function and the data type of the result of the binary
operation.

The data type for 1hs_type or rhs_type may be left unspecified by using Any_Type for either
of these values. However, at least one of the parameters must correspond to a user-defined
datatype.

Example

This example defines a vector data type and extends the "*" operator to the new type:

typedef struct { x, y, z } Vector_Type;
define vector (x, y, z)

{

65

66 Chapter 6. Functions that Manipulate Structures
variable v = @Vector_Type;
V.X = Xj
v.y =V
v.z = z;
return v;
}
static define vector_scalar_mul (v, a)
{
return vector (a*v.x, a*v.y, a*v.z);
}
static define scalar_vector_mul (a, v)
{
return vector_scalar_mul (v, a);
}
static define dotprod (vi1,v2)
{
return vl.x*v2.x + vl.y*v2.y + vl.z*v2.z;
}
__add_binary [GELN Vector_Type, &scalar_vector_mul, Any_Type, Vector_Type);
__add_binary [GELN Vector_Type, &scalar_vector_mul, Any_Type, Vector_Type);
__add_binary ("x", Double_Type, &dotprod, Vector_Type, Vector_Type);
See Also
6.4 (_ _add unary), 6.2 (__add_string), ??7 (__add_destroy)
6.2 add string
Synopsis
Specify a string representation for a user-defined type
Usage
__add_string (DataType_Type user_type, Ref_Type func)
Description
The __add_string function specifies a function to be called when a string representation is
required for the specified user-defined datatype.
Example

Consider the Vector_Type object defined in the example for the __add_binary function.

static define vector_string (v)
{
return sprintf ("[%S,%S,%S1", v.x, v.y, v.z);
}
__add_string (Vector_Type, &vector_string);

Then

v = vector (3, 4, 5);

vmessage ("v=4S", v);

6.3. @ add typecast 67

will generate the message:
v=[3,4,5]

See Also
6.4 (__add unary), 6.1 (__add_ binary), ?? (__add_destroy), 6.3 (__add_typecast)

6.3 _ add_typecast

Synopsis
Add a typecast-function for a user-defined type

Usage
_add_typecast (DataType_Type user_type, DataType_Type totype, Ref_Type func)

Description

The __add_typecast function specifies a function to be called to typecast the user-defined
type to an object of type totype. The function must be defined to take a single argument (the
user-type to be converted) and must return an object of type totype.

See Also
6.4 (__add unary), 6.1 (__add binary), ?? (__add_destroy), 6.2 (__add_string)

6.4 _add__unary

Synopsis
Extend a unary operator to a user-defined type
Usage
__add_unary (op, return_type, unary_func, user_type)
String_Type op;

Ref_Type unary_func;
DataType_Type return_type, user_type;

Description
The __add_unary function is used to define the action of an unary operation on a user-defined
type. The first parameter op must be a valid unary operator

n_n’ "not", n~n

or one of the following;:

UEE LI

"abs", ”sign", "sqr", nmu12n’ ”_iSPOS", "_isneg", "_isnonneg",

The third parameter, unary_func specifies the function to be called to carry out the specified
unary operation on the data type user_type. The result of the operation is indicated by the
value of the return_type parameter and must also be the return type of the unary function.

68 Chapter 6. Functions that Manipulate Structures

Example

The example for the __add_binary function defined a Vector_Type object. Here, the unary
"_" and "abs" operators are extended to this type:

static define vector_chs (v)

{
variable vl = @Vector_Type;
vi.x = -v.x;
vi.y = -v.y;
vi.z = -v.z;
return vi;
}
static define vector_abs (v)
{
return sqrt (v.x*v.x + V.y*v.y + v.z¥v.z);
}

__add_unary (m-m, Vector_Type, &vector_chs, Vector_Type);
__add_unary ("abs", Double_Type, &vector_abs, Vector_Type);

See Also
6.1 (_ _add_binary), 6.2 (__add_string), ?? (_ _add_destroy)

6.5 get struct field

Synopsis

Get the value associated with a structure field
Usage
x = get_struct_field (Struct_Type s, String field_name)

Description

The get_struct_field function gets the value of the field whose name is specified by
field_name of the structure s. If the specified name is not a field of the structure, the
function will throw an InvalidParmError exception.

See Also
6.10 (set_struct field), 6.6 (get struct field names), 2.3 (array info)

6.6 get struct field names
Synopsis
Retrieve the field names associated with a structure

Usage

String Typel] = get_struct_field_names (Struct_Type s)

6.7. is struct type 69

Description
The get_struct_field_names function returns an array of strings whose elements specify the
names of the fields of the struct s.

Example

The following example illustrates how the get_struct_field_names function may be used in
conjunction with the get_struct_field function to print the value of a structure.

define print_struct (s)

{
variable name, value;
foreach (get_struct_field_names (s))
{
name = ();
value = get_struct_field (s, name);
vmessage ("s.%s = %s\n", name, string (value));
}
}

See Also
6.9 (_push_struct_field values), 6.5 (get _struct_field)

6.7 _is struct type

Synopsis

Determine whether or not an object is a structure
Usage

Integer_Type _is_struct_type (X)

Description

The _is_struct_type function returns 1 if the parameter refers to a structure or a user-
defined type, or to an array of structures or user-defined types. If the object is neither, 0 will
be returned.

See Also
12.17 (typeof), 12.16 (_typeof), 6.8 (is_struct_type)

6.8 1is_ struct type
Synopsis
Determine whether or not an object is a structure

Usage

Integer_Type is_struct_type (X)

70 Chapter 6. Functions that Manipulate Structures

Description
The is_struct_type function returns 1 if the parameter refers to a structure or a user-defined
type. If the object is neither, 0 will be returned.

See Also
12.17 (typeof), 12.16 (_typeof), 6.7 (_is_struct_type)

6.9 push_ struct field values

Synopsis

Push the values of a structure’s fields onto the stack

Usage

Integer_Type num = _push_struct_field_values (Struct_Type s)

Description

The _push_struct_field_values function pushes the values of all the fields of a structure
onto the stack, returning the number of items pushed. The fields are pushed such that the last
field of the structure is pushed first.

See Also

6.6 (get _struct field names), 6.5 (get_struct_field)

6.10 set struct field

Synopsis

Set the value associated with a structure field

Usage

set_struct_field (s, field_name, field_value)

Struct_Type s;
String_Type field_name;
Generic_Type field_value;
Description
The set_struct_field function sets the value of the field whose name is specified by
field_name of the structure s to field_value.

See Also

6.5 (get_struct_field), 6.6 (get_ struct field names), 6.11 (set struct fields), 2.3 (ar-
ray_info)

6.11. set struct fields 71

6.11 set struct fields

Synopsis
Set the fields of a structure

Usage

set_struct_fields (Struct_Type s, ...)

Description

The set_struct_fields function may be used to set zero or more fields of a structure. The
fields are set in the order in which they were created when the structure was defined.

Example

variable s = struct { name, age, height };
set_struct_fields (s, "Bill", 13, 64);

See Also
6.10 (set_struct field), 6.6 (get struct field names)

72

Chapter 6. Functions that Manipulate Structures

Chapter 7

Functions that Create and
Manipulate Lists

7.1 list append

Synopsis
Append an object to a list

Usage
list_append (List_Type list, object [,Int_Type nth])

Description
The 1ist_append function is like 1ist_insert except this function appends the object to the
list. The optional argument nth may be used to specify where the object is to be appended.
See the documentation on list_insert for more details.

See Also

7.2 (list_concat), 7.4 (list_insert), 7.5 (list_join), 7.3 (list_delete), 7.7 (list_pop), 7.6
(list_new), 7.8 (list_reverse)

7.2 list_concat
Synopsis
Concatenate two lists to form a third

Usage

List_Type = list_concat (List_Type a, List_Type b)

Description

This function creates a new list that is formed by concatenating the two lists a and b together.
Neither of the input lists are modified by this operation.

73

74 Chapter 7. Functions that Create and Manipulate Lists

See Also
7.5 (list_join), 7.1 (list_append), 7.4 (list_ insert)

7.3 list_delete

Synopsis

Remove an item from a list
Usage

list_delete (List_Type list, Int_Type nth)
Description

This function removes the nth item in the specified list. The first item in the list corresponds
to a value of nth equal to zero. If nth is negative, then the indexing is with respect to the end
of the list with the last item corresponding to nth equal to -1.

See Also
7.4 (list_insert), 7.1 (list_append), 7.7 (list_pop), 7.6 (list_new), 7.8 (list _reverse)

7.4 list insert

Synopsis
Insert an item into a list
Usage
list_insert (List_Type list, object [,Int_Type nth])

Description

This function may be used to insert an object into the specified list. With just two arguments,
the object will be inserted at the beginning of the list. The optional third argument, nth, may
be used to specify the insertion point. The first item in the list corresponds to a value of nth
equal to zero. If nth is negative, then the indexing is with respect to the end of the list with
the last item given by a value of nth equal to -1.

Notes

It is important to note that
list_insert (list, object, 0);
is not the same as
list = {object, list}
since the latter creates a new list with two items, object and the old list.

See Also
7.1 (list _append), 7.7 (list_pop), 7.3 (list _delete), 7.6 (list _new), 7.8 (list_reverse)

7.5. list join 75

7.5 list_join

Synopsis
Join the elements of a second list onto the end of the first
Usage
list_join (List_Type a, List_Type b)
Description
This function modifies the list a by appending the elements of b to it.

See Also
7.2 (list_concat), 7.1 (list_append), 7.4 (list_insert)

7.6 list new

Synopsis
Create a new list
Usage
List_Type list_new ()

Description

This function creates a new empty List_Type object. Such a list may also be created using
the syntax

list = {};
See Also
7.3 (list_delete), 7.4 (list _insert), 7.1 (list_append), 7.8 (list _reverse), 7.7 (list _pop)

7.7 list pop

Synopsis
Extract an item from a list
Usage
object = list_pop (List_Type list [, Int_Type nth])

Description

The list_pop function returns a object from a list deleting the item from the list in the
process. If the second argument is present, then it may be used to specify the position in the
list where the item is to be obtained. If called with a single argument, the first item in the list
will be used.

See Also
7.3 (list_delete), 7.4 (list_insert), 7.1 (list_append), 7.8 (list _reverse), 7.6 (list _new)

76 Chapter 7. Functions that Create and Manipulate Lists

7.8 list_reverse

Synopsis
Reverse a list
Usage

list_reverse (List_Type list)

Description

This function may be used to reverse the items in list.

Notes

This function does not create a new list. The list passed to the function will be reversed upon
return from the function. If it is desired to create a separate reversed list, then a separate copy
should be made, e.g.,

rev_list = Qlist;

list_reverse (rev_list);

See Also
7.6 (list_new), 7.4 (list_insert), 7.1 (list _append), 7.3 (list _delete), 7.7 (list _pop)

7.9 list to array

Synopsis

Convert a list into an array

Usage
Array_Type list_to_array (List_Type list [,DataType_Type typel)

Description

The list_to_array function converts a list of objects into an array of the same length and
returns the result. The optional argument may be used to specify the array’s data type. If no
type is given, list_to_array tries to find the common data type of all list elements. This
function will generate an exception if the list is empty and no type has been specified, or the
objects in the list cannot be converted to a common type.

Notes

A future version of this function may produce an Any_Type array for an empty or heterogeneous
list.

See Also
2.13 (length), 12.15 (typecast), 23.5 (__pop_list), 12.17 (typeof), 2.7 (array sort)

Chapter 8

Informational Functions

8.1 add_ doc_file

Synopsis

Make a documentation file known to the help system

Usage
add_doc_file (String Type file)

Description
The add_doc_file is used to add a documentation file to the system. Such files are searched
by the get_doc_string_from_file function. The file must be specified using the full path.
See Also
8.12 (set_doc_files), 8.6 (get_doc_files), 8.7 (get _doc_string from file)

8.2 apropos

Synopsis

Generate a list of functions and variables

Usage
Array_Type _apropos (String_Type ns, String Type s, Integer_Type flags)

Description

The _apropos function may be used to get a list of all defined objects in the namespace
ns whose name matches the regular expression s and whose type matches those specified by
flags. It returns an array of strings containing the names matched.

The third parameter flags is a bit mapped value whose bits are defined according to the
following table

7

78 Chapter 8. Informational Functions

Intrinsic Function
User-defined Function

Intrinsic Variable

0 B N -

User-defined Variable
Example

define apropos (s)
{

variable n, name, a;
a = _apropos ("Global", s, 0xF);

vmessage ("Found %d matches:", length (a));
foreach name (a)

message (name);

prints a list of all matches.

Notes

If the namespace specifier ns is the empty string "", then the namespace will default to the
static namespace of the current compilation unit.

See Also
8.9 (is_defined), 4.10 (sprintf), 8.8 (_get namespaces)

8.3 __ FILE

Synopsis

Path of the compilation unit

Usage

String_Type __FILE__

Description

Every private namespace has __FILE__ variable associated with it. If the namespace is asso-
ciated with a file, then the value of this variable will be equal to the pathname of the file. If
the namespace is associated with a string, such as one passed to the eval function, then the

value of this variable will be "***string***";

Notes

In the case of a file, the pathname may be an absolute path or a relative one. If it is a relative
one, then it will be relative to the directory from where the file was loaded, i.e., the value

returned by the getcwd function.

8.4. function name 79

8.4 _ function name

Synopsis
Returns the name of the currently executing function
Usage

String_Type _function_name ()

Description

This function returns the name of the currently executing function. If called from top-level, it
returns the empty string.

See Also
22.12 (_trace_function), 8.9 (is_ defined)

8.5 get defined symbols

Synopsis

Get the symbols defined by the preprocessor
Usage

Int_Type __get_defined_symbols ()

Description

The __get_defined_symbols functions is used to get the list of all the symbols defined by
the S-Lang preprocessor. It pushes each of the symbols on the stack followed by the number
of items pushed.

See Also
8.9 (is_defined), 8.2 (_apropos), 8.8 (_get_namespaces)

8.6 get doc files

Synopsis

Get the list of documentation files
Usage

String Typel] = get_doc_files ()

Description

The get_doc_files function returns the internal list of documentation files as an array of
strings.

See Also
8.12 (set _doc_files), 8.1 (add_doc_file), 8.7 (get _doc_string from _file)

80 Chapter 8. Informational Functions

8.7 get doc_string from file

Synopsis
Read documentation from a file

Usage
String_Type get_doc_string_from_file ([String Type f,] String Type t)

Description

If called with two arguments, get_doc_string_from_file opens the documentation file £ and
searches it for topic t. Otherwise, it will search an internal list of documentation files looking
for the documentation associated with the topic t. If found, the documentation for t will be
returned, otherwise the function will return NULL.

Files may be added to the internal list via the add_doc_file or set_doc_files functions.

See Also
8.1 (add_doc_file), 8.12 (set_doc_files), 8.6 (get doc_files), 8.13 (_slang doc_dir)

8.8 get namespaces

Synopsis

Returns a list of namespace names

Usage

String_Typel[] _get_namespaces ()

Description

This function returns a string array containing the names of the currently defined namespaces.

See Also
8.2 (_apropos), 25.21 (use_namespace), 25.10 (implements), 8.5 (_ _get_ defined _symbols)

8.9 is defined

Synopsis

Determine if a variable or function is defined

Usage

Integer_Type is_defined (String_Type name)

Description

This function is used to determine whether or not a function or variable of the given name has
been defined. If the specified name has not been defined, the function returns 0. Otherwise, it
returns a non-zero value that depends on the type of object attached to the name. Specifically,
it returns one of the following values:

8.10. _is_ initialized 81

+1 intrinsic function
+2 slang function

-1 intrinsic variable
-2 slang variable

0 undefined

Example

Consider the function:

define runhooks (hook)

{
if (2 == is_defined(hook)) eval(hook);
}

This function could be called from another S-Lang function to allow customization of that
function, e.g., if the function represents a mode, the hook could be called to setup keybindings
for the mode.

See Also
12.17 (typeof), 19.4 (eval), 19.2 (autoload), 25.9 (__get_reference), 8.10 (__is_initialized)

8.10 _is_ initialized

Synopsis

Determine whether or not a variable has a value

Usage

Integer_Type __is_initialized (Ref_Type r)

Description

This function returns non-zero of the object referenced by r is initialized, i.e., whether it has
a value. It returns 0 if the referenced object has not been initialized.

Example

The function:

define zero ()
{
variable f;

return __is_initialized (&f);

¥
will always return zero, but

define one ()

{
variable f = 0;

return __is_initialized (&f);

}

will return one.

82 Chapter 8. Informational Functions

See Also
25.9 (__get reference), 25.20 (__uninitialize), 8.9 (is_ defined), 12.17 (typeof), 19.4 (eval)

8.11 _NARGS

Synopsis
The number of parameters passed to a function
Usage

Integer_Type _NARGS The value of the _NARGS variable represents the number of arguments
passed to the function. This variable is local to each function.

Example

This example uses the _NARGS variable to print the list of values passed to the function:

define print_values ()

{
variable arg;
if (_NARGS == 0)
{
message ("Nothing to print");
return;
}
foreach arg (__pop_args (_NARGS))
vmessage ("Argument value is: %S", arg.value);
}

See Also
23.4 (__pop_args), 23.8 (__push_args), 12.17 (typeof)

8.12 set doc_files

Synopsis

Set the internal list of documentation files

Usage
set_doc_files (String_Type[] list)

Description

The set_doc_files function may be used to set the internal list of documentation files. It
takes a single parameter, which is required to be an array of strings. The internal file list is
set to the files specified by the elements of the array.

Example

The following example shows how to add all the files in a specified directory to the internal
list. It makes use of the glob function that is distributed as part of slsh.

8.13. slang doc_dir 83

files = glob ("/path/to/doc/files/*.s1d");
set_doc_files ([files, get_doc_files ()]);

See Also
8.6 (get _doc_files), 8.1 (add_doc_file), 8.7 (get_doc_string from _file)

8.13 _slang doc_dir

Synopsis
Installed documentation directory
Usage

String_Type _slang_doc_dir

Description

The _slang_doc_dir variable is a read-only variable that specifies the compile-time installa-
tion location of the S-Lang documentation.

See Also
8.7 (get _doc_string from file)

8.14 slang version
Synopsis
The S-Lang library version number

Usage

Integer_Type _slang_version

Description

_slang_version is a read-only variable that gives the version number of the S-Lang library.

See Also

8.15 (_slang version _string)

8.15 slang version string
Synopsis
The S-Lang library version number as a string

Usage

String Type _slang_version_string

84 Chapter 8. Informational Functions

Description

_slang_version_stringis aread-only variable that gives a string representation of the version
number of the S-Lang library.

See Also

8.14 (_slang version)

Chapter 9

Mathematical Functions

9.1 abs

Synopsis

Compute the absolute value of a number

Usage
y = abs(x)
Description

The abs function returns the absolute value of an arithmetic type. If its argument is a complex
number (Complex_Type), then it returns the modulus. If the argument is an array, a new array
will be created whose elements are obtained from the original array by using the abs function.

See Also
9.40 (sign), 9.44 (sqr)

9.2 acos

Synopsis

Compute the arc-cosine of a number
Usage

y = acos (x)

Description

The acos function computes the arc-cosine of a number and returns the result. If its argument
is an array, the acos function will be applied to each element and the result returned as an
array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

85

86 Chapter 9. Mathematical Functions

9.3 acosh

Synopsis

Compute the inverse cosh of a number
Usage

y = acosh (x)

Description

The acosh function computes the inverse hyperbolic cosine of a number and returns the result.
If its argument is an array, the acosh function will be applied to each element and the result
returned as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.4 asin

Synopsis
Compute the arc-sine of a number
Usage

y = asin (x)

Description

The asin function computes the arc-sine of a number and returns the result. If its argument
is an array, the asin function will be applied to each element and the result returned as an
array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.5 asinh

Synopsis
Compute the inverse-sinh of a number
Usage

y = asinh (x)

Description

The asinh function computes the inverse hyperbolic sine of a number and returns the result.
If its argument is an array, the asinh function will be applied to each element and the result
returned as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.6. atan 87

9.6 atan

Synopsis

Compute the arc-tangent of a number

Usage

y = atan (x)

Description

The atan function computes the arc-tangent of a number and returns the result. If its argument
is an array, the atan function will be applied to each element and the result returned as an
array.

See Also
9.7 (atan2), 9.11 (cos), 9.3 (acosh), 9.12 (cosh)

9.7 atan2

Synopsis

Compute the arc-tangent of the ratio of two variables

Usage

z = atan2 (y, x)

Description

The atan2 function computes the arc-tangent of the ratio y/x and returns the result as a
value that has the proper sign for the quadrant where the point (x,y) is located. The returned
value z will satisfy (-PI < z <= PI). If either of the arguments is an array, an array of the
corresponding values will be returned.

See Also
9.22 (hypot), 9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.8 atanh

Synopsis

Compute the inverse-tanh of a number

Usage

y = atanh (x)

Description

The atanh function computes the inverse hyperbolic tangent of a number and returns the
result. If its argument is an array, the atanh function will be applied to each element and the
result returned as an array.

88 Chapter 9. Mathematical Functions

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.9 ceil

Synopsis

Round x up to the nearest integral value

Usage
y = ceil (x)
Description

This function rounds its numeric argument up to the nearest integral value. If the argument
is an array, the corresponding array will be returned.

See Also
9.18 (floor), 9.38 (round)

9.10 Conj

Synopsis

Compute the complex conjugate of a number
Usage

z1l = Conj (2)
Description

The Conj function returns the complex conjugate of a number. If its argument is an array, the
Conj function will be applied to each element and the result returned as an array.

See Also
9.37 (Real), 9.23 (Imag), 9.1 (abs)

9.11 cos

Synopsis

Compute the cosine of a number

Usage
y = cos (%)
Description

The cos function computes the cosine of a number and returns the result. If its argument is
an array, the cos function will be applied to each element and the result returned as an array.

9.12. cosh 89

See Also
9.41 (sin), 9.6 (atan), 9.3 (acosh), 9.12 (cosh), 9.42 (sincos)

9.12 cosh

Synopsis

Compute the hyperbolic cosine of a number

Usage
y = cosh (x)
Description

The cosh function computes the hyperbolic cosine of a number and returns the result. If its
argument is an array, the cosh function will be applied to each element and the result returned
as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.13 diff

Synopsis

Compute the absolute difference of two values
Usage
y = _diff (x, y)

Description

The _diff function returns a floating point number equal to the absolute value of the difference
of its two arguments. If either argument is an array, an array of the corresponding values will
be returned.

See Also
9.1 (abs)

9.14 exp
Synopsis
Compute the exponential of a number

Usage
y = exp (%)

90 Chapter 9. Mathematical Functions

Description

The exp function computes the exponential of a number and returns the result. If its argument
is an array, the exp function will be applied to each element and the result returned as an
array.

See Also
9.15 (expml), 9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.15 expml

Synopsis
Compute exp(x)-1

Usage
y = expml(x)
Description

The expml function computes exp(x)-1 and returns the result. If its argument is an array,
the expm1 function will be applied to each element and the results returned as an array.

This function should be called whenever x is close to 0 to avoid the numerical error that would
arise in a naive computation of exp(x)-1.

See Also
9.15 (expm1), 9.31 (loglp), 9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.16 feqs

Synopsis

Test the approximate equality of two numbers

Usage
Char_Type feqs (a, b [,reldiff [,absdiff]])

Description

This function compares two floating point numbers a and b, and returns a non-zero value if
they are equal to within a specified tolerance; otherwise 0 will be returned. If either is an
array, a corresponding boolean array will be returned.

The tolerances are specified as relative and absolute differences via the optional third and fourth
arguments. If no optional arguments are present, the tolerances default to reldiff=0.01
and absdiff=1e-6. If only the relative difference has been specified, the absolute difference
(absdiff) will be taken to be 0.0.

For the case when |b|>=|a|, a and b are considered to be equal to within the specified tolerances
if either |b-a|<=absdiff or |b-a|/|b|<=reldiff is true.

See Also
9.20 (fnegs), 9.17 (fgteqs), 9.19 (flteqs)

9.17. fgteqs 91

9.17 fgteqs

Synopsis

Compare two numbers using specified tolerances.
Usage

Char_Type fgtegs (a, b [,reldiff [,absdiff]])
Description

This function is functionally equivalent to:

(a >= b) or feqs(a,b,...)
See the documentation of feqs for more information.

See Also
9.16 (feqs), 9.20 (fneqs), 9.19 (fliteqgs)

9.18 floor

Synopsis

Round x down to the nearest integer
Usage

y = floor (x)
Description

This function rounds its numeric argument down to the nearest integral value. If the argument
is an array, the corresponding array will be returned.

See Also
9.9 (ceil), 9.38 (round), 9.35 (nint)

9.19 flteqgs

Synopsis

Compare two numbers using specified tolerances.
Usage

Char_Type fltegs (a, b [,reldiff [,absdiff]])
Description

This function is functionally equivalent to:

(a <= b) or fegs(a,b,...)
See the documentation of feqs for more information.

See Also
9.16 (feqs), 9.20 (fneqs), 9.17 (fgtegs)

92 Chapter 9. Mathematical Functions

9.20 fneqs

Synopsis

Test the approximate inequality of two numbers
Usage

Char_Type fneqs (a, b [,reldiff [,absdiff]])
Description

This function is functionally equivalent to:

not fnegs(a,b,...)

See the documentation of feqs for more information.
See Also

9.16 (feqs), 9.17 (fgteqs), 9.19 (flteqs)

9.21 get float format

Synopsis

Get the format for printing floating point values.
Usage

String_Type get_float_format ()
Description

The get_float_format retrieves the format string used for printing single and double precision
floating point numbers. See the documentation for the set_float_format function for more
information about the format.

See Also
9.39 (set_float format)

9.22 hypot

Synopsis

Compute sqrt(x1°2+x2"24...+xN"2)
Usage

r = hypot (x1 [,x2,..,xN])
Description

If given two or more arguments, x1,...,xN, the hypot function computes the quantity
sqrt(x1°2+...+xN"2) using an algorithm that tries to avoid arithmetic overflow. If any
of the arguments is an array, an array of the corresponding values will be returned.

If given a single array argument x, the hypot function computes sqrt(sumsq(x)), where
sumsq (x) computes the sum of the squares of the elements of x.

9.23. Imag 93

Example

A vector in Euclidean 3 dimensional space may be represented by an array of three values
representing the components of the vector in some orthogonal cartesian coordinate system.
Then the length of the vector may be computed using the hypot function, e.g.,

A = [2,3,4];
len_A = hypot (A);

The dot-product or scalar-product between two such vectors A and B may be computed using
the sum(A*B). It is well known that this is also equal to the product of the lengths of the two
vectors and the cosine of the angle between them. Hence, the angle between the vectors A and
B may be computed using

ahat = A/hypot(A);
bhat = B/hypot (B);
theta = acos(\sum(ahat*bhat));

Here, ahat and bhat are the unit vectors associated with the vectors A and B, respectively.
Unfortunately, the above method for computing the angle between the vectors is numerically
unstable when A and B are nearly parallel. An alternative method is to use:

ahat = A/hypot(4);

bhat = B/hypot (B);

ab = sum(ahat*bhat) ;

theta = atan2 (hypot(bhat - ab*ahat), ab);

See Also
9.7 (atan2), 9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh), 2.21 (sum), 2.22 (sumsq)

9.23 Imag

Synopsis

Compute the imaginary part of a number

Usage
i = Imag (2)
Description

The Imag function returns the imaginary part of a number. If its argument is an array, the
Imag function will be applied to each element and the result returned as an array.

See Also
9.37 (Real), 9.10 (Conj), 9.1 (abs)

9.24 isinf

Synopsis
Test for infinity

94 Chapter 9. Mathematical Functions

Usage

y = isinf (x)

Description

This function returns 1 if x corresponds to an IEEE infinity, or 0 otherwise. If the argument
is an array, an array of the corresponding values will be returned.

See Also

9.25 (isnan), ?? (_Inf)

9.25 isnan

Synopsis

isnan

Usage

y = isnan (x)

Description

This function returns 1 if x corresponds to an IEEE NaN (Not a Number), or 0 otherwise. If
the argument is an array, an array of the corresponding values will be returned.

See Also
9.24 (isinf), ?? (_NaN)

9.26 _ isneg

Synopsis

Test if a number is less than 0
Usage
Char_Type _isneg(x)

Description

This function returns 1 if a number is less than 0, and zero otherwise. If the argument is an
array, then the corresponding array of boolean (Char_Type) values will be returned.

See Also

9.28 (_ispos), 9.27 (_isnonneg)

9.27. _ isnonneg 95

9.27 _ isnonneg

Synopsis

Test if a number is greater than or equal to 0
Usage

Char_Type _isnonneg(x)
Description

This function returns 1 if a number is greater than or equal to 0, and zero otherwise. If the
argument is an array, then the corresponding array of boolean (Char_Type) values will be
returned.

See Also
9.26 (_isneg), 9.28 (_ispos)

9.28 ispos

Synopsis

Test if a number is greater than 0
Usage

Char_Type _ispos(x)
Description

This function returns 1 if a number is greater than 0, and zero otherwise. If the argument is
an array, then the corresponding array of boolean (Char_Type) values will be returned.

See Also
9.26 (_isneg), 9.27 (_isnonneg)

9.29 log

Synopsis

Compute the logarithm of a number

Usage
y = log (x)
Description

The log function computes the natural logarithm of a number and returns the result. If its
argument is an array, the log function will be applied to each element and the result returned
as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh), 9.31 (loglp)

96 Chapter 9. Mathematical Functions

9.30 logl0

Synopsis

Compute the base-10 logarithm of a number
Usage

y = logl0 (x)

Description

The logl0 function computes the base-10 logarithm of a number and returns the result. If
its argument is an array, the log10 function will be applied to each element and the result
returned as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.31 loglp

Synopsis

Compute the logarithm of 1 plus a number
Usage

y = loglp (%)
Description

The loglp function computes the natural logarithm of 1.0 plus x returns the result. If its
argument is an array, the loglp function will be applied to each element and the results
returned as an array.

This function should be used instead of 1log(1+x) to avoid numerical errors whenever x is close
to 0.

See Also
9.29 (log), 9.15 (expm1), 9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.32 max

Synopsis

Compute the maximum of two or more numeric values

Usage
z = _max (x1,...,xN)
Description

The _max function returns a floating point number equal to the maximum value of its argu-
ments. If any of the argiments are arrays (of equal length), an array of the corresponding
values will be returned.

9.33. min 97

Notes

This function returns a floating point result even when the arguments are integers.

See Also
9.33 (_min), 2.16 (min), 2.14 (max)

9.33 min

Synopsis

Compute the minimum of two or more numeric values

Usage
z = _min (x1,...,xN)
Description

The _min function returns a floating point number equal to the minimum value of its argu-
ments. If any of the argiments are arrays (of equal length), an array of the corresponding
values will be returned.

Notes

This function returns a floating point result even when the arguments are integers.

See Also
2.16 (min), 9.32 (_max), 2.14 (max)

9.34 mul2

Synopsis

Multiply a number by 2

Usage
y = mul2(x)
Description

The mul2 function multiplies an arithmetic type by two and returns the result. If its argument
is an array, a new array will be created whose elements are obtained from the original array
by using the mul2 function.

See Also
9.44 (sqr), 9.1 (abs)

98 Chapter 9. Mathematical Functions

9.35 nint

Synopsis

Round to the nearest integer

Usage

i = nint(x)

Description

The nint rounds its argument to the nearest integer and returns the result. If its argument
is an array, a new array will be created whose elements are obtained from the original array
elements by using the nint function.

See Also
9.38 (round), 9.18 (floor), 9.9 (ceil)

9.36 polynom

Synopsis

Evaluate a polynomial

Usage

Double_Type polynom([a0,al,...aN], x [,use_factoriall)

Description

The polynom function returns the value of the polynomial expression
a0 + al*x + a2*x~2 + ... + alN*x~N

where the coefficients are given by an array of values [a0, ... ,aN]. If x is an array, the function
will return a corresponding array. If the value of the optional use_factorial parameter is
non-zero, then each term in the sum will be normalized by the corresponding factorial, i.e.,

a0/0! + al*x/1! + a2%x~2/2! + ... + aN*x~N/N!

Notes
Prior to version 2.2, this function had a different calling syntax and and was less useful.
The polynom function does not yet support complex-valued coefficients.

For the case of a scalar value of x and a small degree polynomial, it is more efficient to use an
explicit expression.

See Also
9.14 (exp)

9.37. Real 99

9.37 Real

Synopsis

Compute the real part of a number

Usage
r = Real (2)
Description

The Real function returns the real part of a number. If its argument is an array, the Real
function will be applied to each element and the result returned as an array.

See Also
9.23 (Imag), 9.10 (Conj), 9.1 (abs)

9.38 round

Synopsis

Round to the nearest integral value

Usage

y = round (x)

Description
This function rounds its argument to the nearest integral value and returns it as a floating
point result. If the argument is an array, an array of the corresponding values will be returned.
See Also
9.18 (floor), 9.9 (ceil), 9.35 (nint)

9.39 set float format

Synopsis

Set the format for printing floating point values.

Usage
set_float_format (String Type fmt)

Description

The set_float_format function is used to set the floating point format to be used when
floating point numbers are printed. The routines that use this are the traceback routines
and the string function, any anything based upon the string function. The default value
is "%S", which causes the number to be displayed with enough significant digits such that
x==atof (string(x)).

Example

100 Chapter 9. Mathematical Functions

set_float_format ("%S"); % default

s = string (PI); h -->s = "3.141592653589793"
set_float_format ("%16.10f");

s = string (PI); % -->s = "3.1415926536"
set_float_format ("%10.6e");

s = string (PI); h -->s = "3.141593e+00"

See Also
9.21 (get_float_format), 12.12 (string), 4.10 (sprintf), 12.1 (atof), 12.7 (double)

9.40 sign

Synopsis

Compute the sign of a number

Usage
y = sign(x)
Description

The sign function returns the sign of an arithmetic type. If its argument is a complex number
(Complex_Type), the sign will be applied to the imaginary part of the number. If the argument
is an array, a new array will be created whose elements are obtained from the original array
by using the sign function.

When applied to a real number or an integer, the sign function returns -1, 0, or +1 according
to whether the number is less than zero, equal to zero, or greater than zero, respectively.

See Also
9.1 (abs)

9.41 sin

Synopsis

Compute the sine of a number
Usage
y = sin ()

Description

The sin function computes the sine of a number and returns the result. If its argument is an
array, the sin function will be applied to each element and the result returned as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh), 9.42 (sincos)

9.42. sincos 101

9.42 sincos

Synopsis

Compute the sine and cosine of a number
Usage
(s, c) = sincos (x)

Description

The sincos function computes the sine and cosine of a number and returns the result. If
its argument is an array, the sincos function will be applied to each element and the result

returned as an array.

See Also
9.41 (sin), 9.11 (cos)

9.43 sinh

Synopsis

Compute the hyperbolic sine of a number

Usage
y = sinh (x)
Description

The sinh function computes the hyperbolic sine of a number and returns the result. If its
argument is an array, the sinh function will be applied to each element and the result returned

as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.44 sqr

Synopsis

Compute the square of a number

Usage
y = sqr(x)
Description

The sqr function returns the square of an arithmetic type. If its argument is a complex number
(Complex_Type), then it returns the square of the modulus. If the argument is an array, a new
array will be created whose elements are obtained from the original array by using the sqr
function.

102 Chapter 9. Mathematical Functions

Notes

For real scalar numbers, using x*x instead of sqr(x) will result in faster executing code.
However, if x is an array, then sqr(x) will execute faster.

See Also
9.1 (abs), 9.34 (mul2)

9.45 sqrt

Synopsis

Compute the square root of a number

Usage
y = sqrt (x)
Description

The sqrt function computes the square root of a number and returns the result. If its argument
is an array, the sqrt function will be applied to each element and the result returned as an
array.

See Also
9.44 (sqr), 9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.46 tan

Synopsis

Compute the tangent of a number

Usage
y = tan (%)
Description

The tan function computes the tangent of a number and returns the result. If its argument is
an array, the tan function will be applied to each element and the result returned as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

9.47 tanh

Synopsis

Compute the hyperbolic tangent of a number

9.47. tanh 103

Usage
y = tanh (x)

Description

The tanh function computes the hyperbolic tangent of a number and returns the result. If its
argument is an array, the tanh function will be applied to each element and the result returned
as an array.

See Also
9.11 (cos), 9.6 (atan), 9.3 (acosh), 9.12 (cosh)

104 Chapter 9. Mathematical Functions

Chapter 10

Message and Error Functions

10.1 errno

Synopsis

Error code set by system functions

Usage

Int_Type errno

Description

A system function can fail for a variety of reasons. For example, a file operation may fail

because lack of disk space, or the process does not have permission to perform the operation.

Such functions will return -1 and set the variable errno to an error code describing the reason

for failure.

Particular values of errno may be specified by the following symbolic constants (read-only

variables) and the corresponding errno_string value:

E2BIG
EACCES
EBADF
EBUSY
ECHILD
EEXIST
EFAULT
EFBIG
EINTR
EINVAL
EIO
EISDIR
ELOOP
EMFILE
EMLINK
ENAMETOOLONG
ENFILE

"Arg list too long"
"Permission denied"

"Bad file number"

"Mount device busy"

"No children"

"File exists"

"Bad address"

"File too large"
"Interrupted system call"
"Invalid argument"

"I/0 error"

"Is a directory"

"Too many levels of symbolic links"
"Too many open files"
"Too many links"

"File name too long"

"File table overflow"

105

106

Chapter 10.

Message and Error Functions

ENODEV
ENOENT
ENOEXEC
ENOMEM
ENOSPC
ENOTBLK
ENOTDIR
ENOTEMPTY
ENOTTY
ENXIO
EPERM
EPIPE
EROFS
ESPIPE
ESRCH
ETXTBSY
EXDEV

Example

"No such device"

"No such file or directory"
"Exec format error"

"Not enough core"

"No space left on device"
"Block device required"
"Not a directory"
"Directory not empty"

"Not a typewriter"

"No such device or address"
"Operation not permitted"
"Broken pipe"

"Read-only file system"
"Illegal seek"

"No such process"

"Text file busy"

"Cross-device link"

The mkdir function will attempt to create a directory. If it fails, the function will throw an

IOError exception with a message containing the string representation of the errno value.

if (-1 == mkdir (dir))
throw IOError, sprintf ("mkdir %s failed: %s",

See Also

dir, errno_string (errmno));

10.2 (errno_string), 10.3 (error), 16.10 (mkdir)

10.2 errno_string

Synopsis

Return a string describing an errno.

Usage

String_Type errno_string ([Int_Type err 1)

Description

The errno_string function returns a string describing the integer errno code err. If the err

parameter is omitted, the current value of errno will be used. See the description for errno

for more information.

Example

The errno_string function may be used as follows:

define sizeof_file (file)

{

variable st = stat_file (file);

if (st == NULL)

10.3. error

107

throw IOError, sprintf ("Ys:)s", file, errno_string (errmo));

return st.st_size;

See Also
10.1 (errno), 16.15 (stat_file)

10.3 error
Synopsis
Generate an error condition (deprecated)

Usage

error (String_Type msg)

Description

This function has been deprecated in favor of throw.

The error function generates a S-Lang RunTimeError exception. It takes a single string

parameter which is displayed on the stderr output device.

Example
define add_txt_extension (file)
{
if (typeof (file) != String_Type)
error ("add_extension: parameter must be a string");
file += ".txt";
return file;
}
See Also

10.8 (verror), 10.5 (message)

10.4 get exception info
Synopsis
Get information about the current exception

Usage

Struct_Type __get_exception_info ()

Description

This function returns information about the currently active exception in the form as a struc-

ture with the following fields:

108 Chapter 10. Message and Error Functions

error The current exception, e.g., RunTimeError
descr A description of the exception

file Name of the file generating the exception
line Line number where the exception originated
function Function where the exception originated
object A user-defined object thrown by the exception
message A user-defined message

traceback Traceback messages

If no exception is active, NULL will be returned.
This same information may also be obtained via the optional argument to the try statement:

variable e = NULL;

try (e)
{
do_something ();
}
finally
{
if (e != NULL)
vmessage ("An error occurred: Js", e.message);
}

See Also
10.3 (error)

10.5 message

Synopsis

Print a string onto the message device
Usage

message (String_Type s)
Description

The message function will print the string specified by s onto the message device.

Example
define print_current_time ()
{
message (time ());
}
Notes

The message device will depend upon the application. For example, the output message device
for the jed editor corresponds to the line at the bottom of the display window. The default
message device is the standard output device.

See Also
10.9 (vmessage), 4.10 (sprintf), 10.3 (error)

10.6. new exception 109

10.6 new exception
Synopsis
Create a new exception

Usage

new_exception (String Type name, Int_Type baseclass, String_Type descr)

Description

This function creates a new exception called name subclassed upon baseclass. The description
of the exception is specified by descr.

Example

new_exception ("MyError", RunTimeError, "My very own error");

try
{
if (something_is_wrong ())
throw MyError;
}

catch RunTimeError;

In this case, catching RunTimeError will also catch MyError since it is a subclass of
RunTimeError.

See Also
10.3 (error), 10.8 (verror)

10.7 usage

Synopsis

Generate a usage error

Usage
usage (String_Type msg)

Description

The usage function generates a UsageError exception and displays msg to the message device.

Example

Suppose that a function called plot plots an array of x and y values. Then such a function
could be written to issue a usage message if the wrong number of arguments was passed:

define plot ()
{

variable x, y;

if (_NARGS != 2)
usage ("plot (x, y)");

110 Chapter 10. Message and Error Functions

(x,) = O;
% Now do the hard part

See Also
10.3 (error), 10.5 (message)

10.8 verror

Synopsis

Generate an error condition (deprecated)

Usage

verror (String_Type fmt, ...)

Description
This function has been deprecated in favor or throw.

The verror function performs the same role as the error function. The only difference is that
instead of a single string argument, verror takes a sprintf style argument list.

Example
define open_file (file)
{
variable fp;
fp = fopen (file, "r");
if (fp == NULL) verror ("Unable to open %s", file);
return fp;
}
Notes

In the current implementation, the verror function is not an intrinsic function. Rather it is a
predefined S-Lang function using a combination of sprintf and error.

To generate a specific exception, a throw statement should be used. In fact, a throw statement
such as:

if (fp == NULL)
throw OpenError, "Unable to open $file"$;

is preferable to the use of verror in the above example.

See Also
10.3 (error), 4.8 (Sprintf), 10.9 (vmessage)

10.9. vmessage 111

10.9 vmessage

Synopsis
Print a formatted string onto the message device

Usage

vmessage (String Type fmt, ...)

Description

The vmessage function formats a sprintf style argument list and displays the resulting string
onto the message device.

Notes

In the current implementation, the vmessage function is not an intrinsic function. Rather it
is a predefined S-Lang function using a combination of Sprintf and message.

See Also
10.5 (message), 4.10 (sprintf), 4.8 (Sprintf), 10.8 (verror)

112 Chapter 10. Message and Error Functions

Chapter 11

Time and Date Functions

11.1 ctime

Synopsis

Convert a calendar time to a string
Usage

String Type ctime(Long_Type secs)

Description

This function returns a string representation of the time as given by secs seconds since 00:00:00
UTC, Jan 1, 1970.

See Also
11.9 (time), 11.5 (strftime), 11.8 (_time), 11.3 (localtime), 11.2 (gmtime)

11.2 gmtime

Synopsis

Break down a time in seconds to the GMT timezone
Usage

Struct_Type gmtime (Long_Type secs)

Description

The gmtime function is exactly like localtime except that the values in the structure it returns
are with respect to GMT instead of the local timezone. See the documentation for localtime
for more information.

Notes

On systems that do not support the gmtime C library function, this function is the same as
localtime.

113

114

Chapter 11. Time and Date Functions

See

Also
11.3 (localtime), 11.8 (_time), 11.4 (mktime)

11.3 localtime

Synopsis

Break down a time in seconds to the local timezone

Usage

Struct_Type localtime (Long_Type secs)

Description

See

The localtime function takes a parameter secs representing the number of seconds since
00:00:00, January 1 1970 UTC and returns a structure containing information about secs in
the local timezone. The structure contains the following Int_Type fields:

tm_sec The number of seconds after the minute, normally in the range 0 to 59, but can be up
to 61 to allow for leap seconds.

tm_min The number of minutes after the hour, in the range 0 to 59.
tm_hour The number of hours past midnight, in the range 0 to 23.
tm_mday The day of the month, in the range 1 to 31.

tm_mon The number of months since January, in the range 0 to 11.
tm_year The number of years since 1900.

tm_wday The number of days since Sunday, in the range 0 to 6.
tm_yday The number of days since January 1, in the range 0 to 365.

tm_isdst A flag that indicates whether daylight saving time is in effect at the time described.
The value is positive if daylight saving time is in effect, zero if it is not, and negative if the
information is not available.

Also
11.2 (gmtime), 11.8 (_time), 11.1 (ctime), 11.4 (mktime)

11.4 mktime

Synopsis

Convert a time-structure to seconds

Usage

secs = mktime (Struct_Type tm)

Description

The mktime function is essentially the inverse of the localtime function. See the documenta-
tion for that function for more details.

11.5. strftime 115

See Also
11.3 (localtime), 11.2 (gmtime), 11.8 (_time)

11.5 strftime

Synopsis

Format a date and time string

Usage

str = strftime (String_Type format [,Struct_Type tm])

Description

The strftime creates a date and time string according to a specified format. If called with a
single argument, the current local time will be used as the reference time. If called with two
arguments, the second argument specifies the reference time, and must be a structure with the
same fields as the structure returned by the localtime function.

The format string may be composed of one or more of the following format descriptors:

%A full weekday name (Monday)

ha abbreviated weekday name (Mon)

%B full month name (January)

b abbreviated month name (Jan)

he standard date and time representation
%*d day-of-month (01-31)

%H hour (24 hour clock) (00-23)

W1 hour (12 hour clock) (01-12)

%3 day-of-year (001-366)

pAU minute (00-59)

Jim month (01-12)

hp local equivalent of AM or PM

S second (00-59)

YAY week-of-year, first day Sunday (00-53)
YAl week-of-year, first day Monday (00-53)
YA weekday (0-6, Sunday is 0)

A standard time representation

hx standard date representation

WY year with century

hy year without century (00-99)

hZ timezone name

hh percent sign

as well as any others provided by the C library. The actual values represented by the format
descriptors are locale-dependent.

Example

message (strftime ("Today is %A, day %j of the year"));
tm = localtime (0);

message (strftime ("Unix time O was omn a %A", tm));

116 Chapter 11. Time and Date Functions
See Also
11.3 (localtime), 11.9 (time)
11.6 tic
Synopsis
Reset the CPU timer
Usage
_tic O
Description
The _tic function resets the internal CPU timer. The _toc may be used to read this timer.
See the documentation for the _toc function for more information.
See Also
11.12 (_toc), 11.11 (times), 11.7 (tic), 11.13 (toc)
11.7 tic
Synopsis
Reset the interval timer
Usage
void tic ()
Description
The tic function resets the internal interval timer. The toc may be used to read the interval
timer.
Example
The tic/toc functions may be used to measure execution times. For example, at the slsh
prompt, they may be used to measure the speed of a loop:
slsh> tic; loop (500000); toc;
0.06558
Notes
On Unix, this timer makes use of the C library gettimeofday function.
See Also

11.13 (toc), 11.12 (_toc), 11.6 (_tic), 11.11 (times)

11.8. time 117

11.8 _ time

Synopsis

Get the current calendar time in seconds
Usage

Long_Type _time ()
Description

The _time function returns the number of elapsed seconds since 00:00:00 UTC, January 1,

1970. A number of functions (ctime, gmtime, localtime, etc.) are able to convert such a
value to other representations.

See Also

11.1 (ctime), 11.9 (time), 11.3 (localtime), 11.2 (gmtime)

11.9 time

Synopsis
Return the current date and time as a string
Usage
String_Type time ()
Description
This function returns the current time as a string of the form:
Sun Apr 21 13:34:17 1996
See Also

11.5 (strftime), 11.1 (ctime), 10.5 (message), 4.43 (substr)

11.10 timegm

Synopsis

Convert a time structure for the GMT timezone to seconds
Usage

Long_Type secs = timegm(Struct_Type tm)
Description

timegm is the inverse of the gmtime function.
See Also

11.2 (gmtime), 11.4 (mktime), 11.3 (localtime)

118 Chapter 11. Time and Date Functions

11.11 times
Synopsis
Get process times

Usage

Struct_Type times ()

Description

The times function returns a structure containing the following fields:

tms_utime (user time)

tms_stime (system time)

tms_cutime (user time of child processes)
tms_cstime (system time of child processes)

Notes

Not all systems support this function.

See Also
11.6 (_tic), 11.12 (_toc), 11.8 (_time)

11.12 toc

Synopsis

Get the elapsed CPU time for the current process

Usage

Double_Type _toc ()

Description

The _toc function returns the elapsed CPU time in seconds since the last call to _tic. The
CPU time is the amount of time the CPU spent running the code of the current process.

Notes
This function may not be available on all systems.

The implementation of this function is based upon the times system call. The precision of
the clock is system dependent and may not be very accurate for small time intervals. For this
reason, the tic/toc functions may be more useful for small time-intervals.

See Also

11.6 (_tic), 11.7 (tic), 11.13 (toc), 11.11 (times), 11.8 (_time)

11.13. toc 119

11.13 toc

Synopsis
Read the interval timer

Usage
Double_Type toc ()

Description

The toc function returns the elapsed time in seconds since the last call to tic. See the
documentation for the tic function for more information.

See Also
11.7 (tic), 11.6 (_tic), 11.12 (_toc), 11.11 (times), 11.8 (_time)

120 Chapter 11. Time and Date Functions

Chapter 12

Data-Type Conversion Functions

12.1 atof

Synopsis

Convert a string to a double precision number

Usage
Double_Type atof (String_Type s)

Description

This function converts a string s to a double precision value and returns the result. It performs
no error checking on the format of the string. The function _slang_guess_type may be used
to check the syntax of the string.

Example
define error_checked_atof (s)
{
if (__is_datatype_numeric (_slang_guess_type (s)))
return atof (s);
throw InvalidParmError, "$s is not a double"$;
}
See Also

12.15 (typecast), 12.7 (double), 12.11 (_slang_guess_type)

12.2 atoi

Synopsis

Convert a string to an integer

Usage

Int_Type atoi (String_Type str)

121

122 Chapter 12. Data-Type Conversion Functions

Description

The atoi function converts a string to an Int_Type using the standard C library function of
the corresponding name.

Notes
This function performs no syntax checking upon its argument.

See Also
12.9 (integer), 12.3 (atol), 12.4 (atoll), 12.1 (atof), 4.11 (sscanf)

12.3 atol

Synopsis

Convert a string to an long integer
Usage

Long_Type atol (String Type str)
Description

The atol function converts a string to a Long_Type using the standard C library function of
the corresponding name.

Notes

This function performs no syntax checking upon its argument.

See Also
12.9 (integer), 12.2 (atoi), 12.4 (atoll), 12.1 (atof), 4.11 (sscanf)

12.4 atoll

Synopsis
Convert a string to a long long
Usage
LLong_Type atoll (String Type str)

Description

The atoll function converts a string to a LLong_Type using the standard C library function
of the corresponding name.

Notes

This function performs no syntax checking upon its argument. Not all platforms provide
support for the long long data type.

See Also
12.9 (integer), 12.2 (atoi), 12.3 (atol), 12.1 (atof), 4.11 (sscanf)

12.5. char 123

12.5 char

Synopsis

Convert a character code to a string

Usage

String_Type char (Integer_Type c)

Description

The char function converts an integer character code (ascii) value c to a string of unit character
length such that the first character of the string is c¢. For example, char(’a’) returns the
string "a".

If UTF-8 mode is in effect (_slang_utf8_ok is non-zero), the resulting single character may
be represented by several bytes.

If the character code c is less than 0, then byte-semantics will be used with the resulting string
consisting of a single byte whose value is that of -c&0xFF.
Notes

A better name should have been chosen for this function.

See Also
12.9 (integer), 12.12 (string), ?? (typedef), 4.10 (sprintf), 5.8 (pack)

12.6 define case

Synopsis

Define upper-lower case conversion

Usage

define_case (Integer_Type ch_up, Integer_Type ch_low)

Description

This function defines an upper and lowercase relationship between two characters specified by
the arguments. This relationship is used by routines which perform uppercase and lowercase
conversions. The first integer ch_up is the ascii value of the uppercase character and the second
parameter ch_low is the ascii value of its lowercase counterpart.

Notes

This function has no effect in UTF-8 mode.

See Also
4.25 (strlow), 4.38 (strup)

124 Chapter 12. Data-Type Conversion Functions

12.7 double

Synopsis

Convert an object to double precision
Usage

Double_Type double (x)

Description
The double function typecasts an object x to double precision. For example, if x is an array
of integers, an array of double types will be returned. If an object cannot be converted to
Double_Type, a type-mismatch error will result.

Notes

The double function is equivalent to the typecast operation
typecast (x, Double_Type)
To convert a string to a double precision number, use the atof function.

See Also
12.15 (typecast), 12.1 (atof), 12.8 (int)

12.8 int

Synopsis

Typecast an object to an integer
Usage

Int_Type int (s)

Description

This function performs a typecast of an object s to an object of Integer_Type. If s is a string,
it returns returns the ascii value of the first bytes of the string s. If s is Double_Type, int
truncates the number to an integer and returns it.

Example
int can be used to convert single byte strings to integers. As an example, the intrinsic function

isdigit may be defined as

define isdigit (s)

{
if ((int (s) >= ’0’) and (int (s) <= ’9?)) return 1;
return 0;

}
Notes

This function is equivalent to typecast (s, Integer_Type);

See Also
12.15 (typecast), 12.7 (double), 12.9 (integer), 12.5 (char), ?? (isdigit), ?? (isxdigit)

12.9. integer 125

12.9 integer

Synopsis

Convert a string to an integer

Usage
Integer_Type integer (String_Type s)

Description
The integer function converts a string representation of an integer back to an integer. If the
string does not form a valid integer, a SyntaxError will be thrown.

Example

integer ("1234") returns the integer value 1234.

Notes

This function operates only on strings and is not the same as the more general typecast
operator.

See Also
12.15 (typecast), 12.11 (_slang_guess_type), 12.12 (string), 4.10 (sprintf), 12.5 (char)

12.10 isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph,

islower, isprint, ispunct, isspace, isupper, isxdigit

Synopsis

Character classification functions

Usage

Char_Type isalnum(wch) Char_Type isalpha(wch) Char_Type isascii(wch)
Char_Type isblank(wch) Char_Type iscntrl(wch) Char_Type isdigit(wch)
Char_Type isgraph(wch) Char_Type islower(wch) Char_Type isprint(wch)
Char_Type ispunct(wch) Char_Type isspace(wch) Char_Type isupper (wch)
Char_Type isxdigit(wch)

Description

These functions return a non-zero value if the character given by wch is a member of the
character class represented by the function, according to the table below. Otherwise, 0 will be
returned to indicate that the character is not a member of the class. If the parameter wch is
a string, then the first character (not necessarily a byte) of the string will be used.

isalnum : alphanumeric character, equivalent to isalpha or isdigit
isalpha : alphabetic character

isascii : 7-bit unsigned ascii character

isblank : space or a tab

iscntrl : control character

isdigit : digit 0-9

126 Chapter 12. Data-Type Conversion Functions

isgraph : non-space printable character

islower : lower-case character

isprint : printable character, including a space

ispunct : non-alphanumeric graphic character

isspace : whitespace character (space, newline, tab, etc)
isupper : uppercase case character

isxdigit: hexadecimal digit character 0-9, a-f, A-F

See Also
4.34 (strtrans)

12.11 _ slang guess type

Synopsis
Guess the data type that a string represents

Usage
DataType_Type _slang_guess_type (String_Type s)

Description

This function tries to determine whether its argument s represents an integer (short, int, long),
floating point (float, double), or a complex number. If it appears to be none of these, then a
string is assumed. It returns one of the following values depending on the format of the string

s:
Short_Type : short integer (e.g., "2n")
UShort_Type : unsigned short integer (e.g., "2hu")
Integer_Type : integer (e.g., "2")
UInteger_Type : unsigned integer (e.g., "2")
Long_Type : long integer (e.g., "21")
ULong_Type : unsigned long integer (e.g., "21")
Float_Type : float (e.g., "2.0f")
Double_Type : double (e.g., "2.0")
Complex_Type : imaginary (e.g., "2i")
String_Type : Anything else. (e.g., "2foo")

For example, _slang_guess_type("1e2") returns Double_Type but

_slang_guess_type("el2") returns String_Type.

See Also
12.9 (integer), 12.12 (string), 12.7 (double), 12.1 (atof), 25.12 (_ _is_ datatype_numeric)

12.12 string

Synopsis

Convert an object to a string representation.

12.13. tolower 127

Usage
String_Type string (obj)

Description

The string function may be used to convert an object obj of any type to its string represen-
tation. For example, string(12.34) returns "12.34".

Example
define print_anything (anything)
{
message (string (anything));
}
Notes

This function is not the same as typecasting to a String_Type using the typecast function.

See Also
12.15 (typecast), 4.10 (sprintf), 12.9 (integer), 12.5 (char)

12.13 tolower

Synopsis
Convert a character to lowercase.
Usage
Integer_Type lower (Integer_Type ch)

Description

This function takes an integer ch and returns its lowercase equivalent.

See Also
12.14 (toupper), 4.38 (strup), 4.25 (strlow), 12.8 (int), 12.5 (char), 12.6 (define_ case)

12.14 toupper

Synopsis
Convert a character to uppercase.
Usage
Integer_Type toupper (Integer_Type ch)

Description

This function takes an integer ch and returns its uppercase equivalent.

See Also
12.13 (tolower), 4.38 (strup), 4.25 (strlow), 12.8 (int), 12.5 (char), 12.6 (define case)

128 Chapter 12. Data-Type Conversion Functions

12.15 typecast

Synopsis
Convert an object from one data type to another.

Usage

typecast (x, new_type)

Description

The typecast function performs a generic typecast operation on x to convert it to new_type.
If x represents an array, the function will attempt to convert all elements of x to new_type.
Not all objects can be converted and a type-mismatch error will result upon failure.

Example

define to_complex (x)
{
return typecast (x, Complex_Type);

defines a function that converts its argument, x to a complex number.

See Also
12.8 (int), 12.7 (double), 12.17 (typeof)

12.16 _ typeof

Synopsis
Get the data type of an object

Usage
DataType_Type _typeof (x)

Description

This function is similar to the typeof function except in the case of arrays. If the object x
is an array, then the data type of the array will be returned. Otherwise _typeof returns the
data type of x.

Example

if (Integer_Type == _typeof (x))

message ("x is an integer or an integer array");

See Also

12.17 (typeof), 2.3 (array _info), 12.11 (_slang guess type), 12.15 (typecast)

12.17. typeof 129

12.17 typeof

Synopsis
Get the data type of an object

Usage
DataType_Type typeof (%)

Description

This function returns the data type of x.
Example
if (Integer_Type == typeof (x)) message ("x is an integer");

See Also

12.16 (_typeof), 6.8 (is_struct_type), 2.3 (array _info), 12.11 (_slang guess type), 12.15
(typecast)

130 Chapter 12. Data-Type Conversion Functions

Chapter 13

Stdio File I/O Functions

13.1 clearerr

Synopsis
Clear the error of a file stream
Usage
clearerr (File_Type fp)
Description
The clearerr function clears the error and end-of-file flags associated with the open file stream
fp.
See Also
13.5 (ferror), 13.4 (feof), 13.9 (fopen)

13.2 fclose

Synopsis

Close a file
Usage

Integer_Type fclose (File_Type fp)
Description

The fclose function may be used to close an open file pointer fp. Upon success it returns
zero, and upon failure it sets errno and returns -1. Failure usually indicates a that the file
system is full or that fp does not refer to an open file.

Notes

Many C programmers call fclose without checking the return value. The S-Lang language
requires the programmer to explicitly handle any value returned by a function. The simplest
way to handle the return value from fclose is to call it via:

131

132

Chapter 13. Stdio File I/O Functions

() = fclose (fp);

See Also

13.9 (fopen), 13.7 (fgets), 13.6 (fflush), 13.18 (pclose), 10.1 (errno)

13.3 fdopen

Synopsis

Convert a FD_Type file descriptor to a stdio File Type object

Usage

File_Type fdopen (FD_Type, String_Type mode)

Description

The fdopen function creates and returns a stdio File_Type object from the open FD_Type
descriptor £d. The mode parameter corresponds to the mode parameter of the fopen function
and must be consistent with the mode of the descriptor £d. The function returns NULL upon
failure and sets errno.

Notes

Since the stdio File_Type object created by this function is derived from the FD_Type descrip-
tor, the FD_Type is regarded as more fundamental than the File_Type object. This means
that the descriptor must be in scope while the File_Type object is used. In particular, if
the descriptor goes out of scope, the descriptor will get closed causing I/O to the File_Type
object to fail, e.g.,

fd = open ("/path/to/file", O0_RDONLY);
fp = fdopen (fd);
fd = 0; % This will cause the FD_Type descriptor to go out of

% scope. Any I/0 on fp will now fail.

Calling the fclose function on the File_Type object will cause the underlying descriptor to
close.

Any stdio File_Type object created by the fdopen function will remain associated with the
FD_Type descriptor, unless the object is explicitly removed via fclose. This means that code
such as

fd = open (...);
loop (50)
{
fp = fdopen (fd, ...);

}

will result in 50 File_Type objects attached to f£d after the loop has terminated.

See Also

14.6 (fileno), 13.9 (fopen), 14.9 (open), 14.1 (close), 13.2 (fclose), 14.3 (dup_fd)

13.4. feof 133

13.4 feof

Synopsis
Get the end-of-file status

Usage
Integer_Type feof (File_Type fp)

Description
This function may be used to determine the state of the end-of-file indicator of the open file
descriptor fp. It returns zero if the indicator is not set, or non-zero if it is. The end-of-file
indicator may be cleared by the clearerr function.

See Also
13.5 (ferror), 13.1 (clearerr), 13.9 (fopen)

13.5 ferror

Synopsis

Determine the error status of an open file descriptor

Usage
Integer_Type ferror (File_Type fp)

Description
This function may be used to determine the state of the error indicator of the open file de-
scriptor £p. It returns zero if the indicator is not set, or non-zero if it is. The error indicator
may be cleared by the clearerr function.

See Also
13.4 (feof), 13.1 (clearerr), 13.9 (fopen)

13.6 fHush

Synopsis

Flush an output stream

Usage
Integer_Type fflush (File_Type fp)

Description

The ff1lush function may be used to update the stdio output stream specified by fp. It returns
0 upon success, or -1 upon failure and sets errno accordingly. In particular, this function will
fail if fp does not represent an open output stream, or if fp is associated with a disk file and
there is insufficient disk space.

134 Chapter 13. Stdio File I/O Functions

Example

This example illustrates how to use the fflush function without regard to the return value:

() = fputs ("Enter value> ", stdout);
QO fflush (stdout);

See Also
13.9 (fopen), 13.2 (fclose)

13.7 fgets

Synopsis

Read a line from a file

Usage
Integer_Type fgets (SLang_Ref_Type ref, File_Type fp)

Description

fgets reads a line from the open file specified by fp and places the characters in the variable
whose reference is specified by ref. It returns -1 if f£p is not associated with an open file or an
attempt was made to read at the end the file; otherwise, it returns the number of characters
read.

Example

The following example returns the lines of a file via a linked list:

define read_file (file)
{
variable buf, fp, root, tail;
variable list_type = struct { text, next };

root = NULL;

fp = fopen(file, "r");
if (fp == NULL)

throw OpenError, "fopen failed to open $file for reading"$;
while (-1 != fgets (&buf, fp))

{
if (root == NULL)
{
root = Q@list_type;
tail = root;
}
else
{
tail.next = Q@list_type;
tail = tail.next;
}

tail.text = buf;

13.8. fgetslines 135

tail.next = NULL;
}
() = fclose (fp);

return root;

See Also

13.8 (fgetslines), 13.9 (fopen), 13.2 (fclose), 13.11 (fputs), 13.13 (fread), 10.3 (error)

13.8 fgetslines

Synopsis

Read lines as an array from an open file

Usage

String Typel] fgetslines (File_Type fp [,Int_Type num])

Description

The fgetslines function reads a specified number of lines as an array of strings from the file
associated with the file pointer fp. If the number of lines to be read is left unspecified, the
function will return the rest of the lines in the file. If the file is empty, an empty string array
will be returned. The function returns NULL upon error.

Example

The following function returns the number of lines in a file:

define count_lines_in_file (file)
{

variable fp, lines;

fp = fopen (file, "r");
if (fp == NULL)

return -1;

lines = fgetslines (fp);
if (lines == NULL)

return -1;

return length (lines);

}

Note that the file was implicitly closed when the variable £fp goes out of scope (in the case,
when the function returns).

See Also

13.7 (fgets), 13.13 (fread), 13.9 (fopen), 13.12 (fputslines)

136 Chapter 13. Stdio File I/O Functions

13.9 fopen
Synopsis
Open a file

Usage

File_Type fopen (String Type f, String Type m)

Description

The fopen function opens a file £ according to the mode string m. Allowed values for m are:

"r" Read only

"w" Write only

"a" Append

"r+" Reading and writing at the beginning of the file.

"w+" Reading and writing. The file is created if it does not

exist; otherwise, it is truncated.
"a+" Reading and writing at the end of the file. The file is created

if it does not already exist.

In addition, the mode string can also include the letter ’b’ as the last character to indicate
that the file is to be opened in binary mode.

Upon success, fopen returns a File_Type object which is meant to be used by other operations
that require an open file pointer. Upon failure, the function returns NULL.

Example

The following function opens a file in append mode and writes a string to it:

define append_string_to_file (str, file)
{
variable fp = fopen (file, "a");
if (fp == NULL)
throw OpenError, "$file could not be opened"$;
0O
0O

fputs (str, fp);
fclose (fp);

Note that the return values from fputs and fclose were ignored.

Notes

There is no need to explicitly close a file opened with fopen. If the returned File_Type object
goes out of scope, the interpreter will automatically close the file. However, explicitly closing
a file with fclose and checking its return value is recommended.

See Also

13.2 (fclose), 13.7 (fgets), 13.11 (fputs), 13.19 (popen)

13.10. fprintf 137

13.10 fprintf

Synopsis

Create and write a formatted string to a file

Usage
Int_Type fprintf (File_Type fp, String Type fmt, ...)

Description

fprintf formats the objects specified by the variable argument list according to the format
fmt and write the result to the open file pointer fp.

The format string obeys the same syntax and semantics as the sprintf format string. See the
description of the sprintf function for more information.

fprintf returns the number of bytes written to the file, or -1 upon error.

See Also
13.11 (fputs), 13.20 (printf), 13.17 (fwrite), 10.5 (message)

13.11 fputs

Synopsis

Write a string to an open stream

Usage
Integer_Type fputs (String Type s, File_Type fp)

Description

The fputs function writes the string s to the open file pointer fp. It returns -1 upon failure
and sets errno, otherwise it returns the length of the string.

Example

The following function opens a file in append mode and uses the fputs function to write to it.

define append_string to_file (str, file)
{
variable fp;
fp = fopen (file, "a");
if (fp == NULL)
throw OpenError, "Unable to open $file"$;
if ((-1 == fputs (str, fp))
Il (-1 == fclose (fp)))

throw WriteError, "Error writing to $file"$;

Notes

One must not disregard the return value from the fputs function. Doing so may lead to a
stack overflow error.

To write an object that contains embedded null characters, use the fwrite function.

138 Chapter 13. Stdio File I/O Functions

See Also
13.2 (fclose), 13.9 (fopen), 13.7 (fgets), 13.17 (fwrite)

13.12 fputslines

Synopsis

Write an array of strings to an open file

Usage
Int_Type fputslines (String_Typella, File_Type fp)

Description
The fputslines function writes an array of strings to the specified file pointer. It returns the
number of elements successfully written. Any NULL elements in the array will be skipped.

Example

if (length (lines) != fputslines (lines, fp))
throw WriteError;
See Also
13.11 (fputs), 13.8 (fgetslines), 13.9 (fopen)

13.13 fread

Synopsis
Read binary data from a file

Usage
UInt_Type fread (Ref_Type b, DataType_Type t, Ulnt_Type n, File_Type fp)

Description

The fread function may be used to read n objects of type t from an open file pointer fp.
Upon success, it returns the number of objects read from the file and places the objects in
variable specified by b. Upon error or end-of-file, it returns -1 and sets errno accordingly.

If more than one object is read from the file, those objects will be placed in an array of the
appropriate size.
Example

The following example illustrates how to read 50 integers from a file:

define read_50_ints_from_a_file (file)
{

variable fp, n, buf;

fp = fopen (file, "rb");

13.14. fread bytes 139

if (fp == NULL)

throw OpenError;
n = fread (&buf, Int_Type, 50, fp);
if (n == -1)

throw ReadError, "fread failed";
() = fclose (fp);

return buf;

Notes
Use the pack and unpack functions to read data with a specific byte-ordering.

The fread_bytes function may be used to read a specified number of bytes in the form of a
binary string (BString_Type).

If an attempt is made to read at the end of a file, the function will return -1. To distinguish
this condition from a system error, the feof function should be used. This distinction is
particularly important when reading from a socket or pipe.

See Also

13.14 (fread_bytes), 13.17 (fwrite), 13.7 (fgets), 13.4 (feof), 13.5 (ferror), 13.9 (fopen), 5.8
(pack), 5.11 (unpack)

13.14 fread bytes

Synopsis

Read bytes from a file as a binary-string

Usage
UInt_Type fread_bytes (Ref_Type b, UInt_Type n, File_Type fp)

Description

The fread_bytes function may be used to read n bytes from from an open file pointer fp.
Upon success, it returns the number of bytes read from the file and assigns to the variable
attached to the reference b a binary string formed from the bytes read. Upon error or end of
file, the function returns -1 and sets errno accordingly.

Notes

Use the pack and unpack functions to read data with a specific byte-ordering.

See Also
13.13 (fread), 13.17 (fwrite), 13.7 (fgets), 13.9 (fopen), 5.8 (pack), 5.11 (unpack)

13.15 fseek

Synopsis

Reposition a stdio stream

140 Chapter 13. Stdio File I/O Functions

Usage
Integer_Type fseek (File_Type fp, LLong_Type ofs, Integer_Type whence)

Description

The fseek function may be used to reposition the file position pointer associated with the open
file stream fp. Specifically, it moves the pointer ofs bytes relative to the position indicated by
whence. If whence is set to one of the symbolic constants SEEK_SET, SEEK_CUR, or SEEK_END,
the offset is relative to the start of the file, the current position indicator, or end-of-file,
respectively.

The function returns 0 upon success, or -1 upon failure and sets errno accordingly.

Example
define rewind (fp) { if (0 == fseek (fp, 0, SEEK_SET)) return; vmessage ("rewind failed,
reason: %s", errno_string (errno)); }

See Also
13.16 (ftell), 13.9 (fopen)

13.16 ftell

Synopsis

Obtain the current position in an open stream
Usage

LLong_Type ftell (File_Type fp)

Description

The ftell function may be used to obtain the current position in the stream associated with
the open file pointer fp. It returns the position of the pointer measured in bytes from the
beginning of the file. Upon error, it returns -1 and sets errno accordingly.

See Also
13.15 (fseek), 13.9 (fopen)

13.17 fwrite

Synopsis
Write binary data to a file
Usage
UInt_Type fwrite (b, File_Type fp)

Description

The fwrite function may be used to write the object represented by b to an open file. If b is
a string or an array, the function will attempt to write all elements of the object to the file.

13.18. pclose 141

It returns the number of elements successfully written, otherwise it returns -1 upon error and
sets errno accordingly.

Example

The following example illustrates how to write an integer array to a file. In this example, fp
is an open file descriptor:

variable a = [1:50]; % 50 element integer array
if (50 != furite (a, fp))

throw WriteError;
Here is how to write the array one element at a time:

variable ai, a = [1:50];

foreach ai (a)

{
if (1 !'= fuwrite(ai, fp))

throw WriteError;

Notes

Not all data types may be supported the fwrite function. It is supported by all vector, scalar,
and string objects.

See Also
13.13 (fread), 13.11 (fputs), 13.9 (fopen), 5.8 (pack), 5.11 (unpack)

13.18 pclose

Synopsis
Close a process pipe
Usage
Integer_Type pclose (File_Type fp)

Description

The pclose function waits for the process associated with fp to exit and then returns the exit
status of the command.

See Also
13.19 (popen), 13.2 (fclose)

13.19 popen

Synopsis

Open a pipe to a process

142 Chapter 13. Stdio File I/O Functions

Usage

File_Type popen (String Type cmd, String_Type mode)

Description

The popen function executes a process specified by cmd and opens a unidirectional pipe to
the newly created process. The mode indicates whether or not the pipe is open for reading or
writing. Specifically, if mode is "r", then the pipe is opened for reading, or if mode is "w", then
the pipe will be open for writing.

Upon success, a File_Type pointer will be returned, otherwise the function failed and NULL
will be returned.

Notes
This function is not available on all systems.

The process module’s new_process function provides a much more secure and powerful in-
terface to process I/0.

See Also

?? (new _process), 13.18 (pclose), 13.9 (fopen)

13.20 printf

Synopsis

Create and write a formatted string to stdout

Usage

Int_Type printf (String Type fmt, ...)

Description

printf formats the objects specified by the variable argument list according to the format fmt
and write the result to stdout. This function is equivalent to fprintf used with the stdout
file pointer. See fprintf for more information.

printf returns the number of bytes written or -1 upon error.

Notes

Many C programmers do not check the return status of the printf C library function. Make
sure that if you do not care about whether or not the function succeeds, then code it as in the
following example:

() = printf ("%s laid %d eggs\n", chicken_name, num_egg);

See Also
13.11 (fputs), 13.10 (fprintf), 13.17 (fwrite), 10.5 (message)

13.21. setvbuf 143

13.21 setvbuf

Synopsis

Usage
Int_Type setvbuf (File_Type fp, Int_Type mode, Int_Type size)

Description

The setvbuf function may be used to control how the stdio stream specified by the open
File_Type object is buffered.

The mode argument must be one of the following values:

_IONBF : unbuffered
_IOFBF : fully buffered
_IOLBF : line buffered

The size argument controls the size of the buffer. If size is 0, then the function will not
change the size of the buffer, only the mode. Otherwise, size is expected to be larger than 0
and a buffer of the requested size will be allocated for the stream. are buffered.

Notes

This function must be used only after the stream has been opened and before any other
operations have been performed on the stream.

See Also
13.9 (fopen), 13.2 (fclose), 13.6 (fHush)

144 Chapter 13. Stdio File I/O Functions

Chapter 14

Low-level POSIX I/0O functions

14.1 close

Synopsis
Close an open file descriptor

Usage
Int_Type close (FD_Type fd)

Description

The close function is used to close an open file descriptor created by the open function. Upon
success 0 is returned, otherwise the function returns -1 and sets errno accordingly.

See Also
14.9 (open), 14.2 (_close), 13.2 (fclose), 14.10 (read), 14.11 (write)

14.2 close

Synopsis
Close an open file descriptor

Usage

Int_Type _close (Int_Type £d)

Description

The _close function is used to close the underlying integer open file descriptor. Upon success
0 is returned, otherwise the function returns -1 and sets errno accordingly.

See Also
14.9 (open), 14.5 (_fileno), 14.1 (close), 13.2 (fclose), 14.10 (read), 14.11 (write)

145

146 Chapter 14. Low-level POSIX I/0O functions

14.3 dup_ fd

Synopsis
Duplicate a file descriptor
Usage
FD_Type dup_fd (FD_Type fd)
Description
The dup_fd function duplicates a specified file descriptor and returns the duplicate. If the
function fails, NULL will be returned and errno set accordingly.
Notes

This function is essentially a wrapper around the POSIX dup function.

See Also
14.9 (open), 14.1 (close)

14.4 dup2 fd

Synopsis
Duplicate a file descriptor
Usage
Int_Type dup2_fd (FD_Type fd, int newfd)

Description

The dup2_fd function makes newfd a copy of the specified file descriptor £d. Upon success
returns newfd, otherwise it returns -1 and sets errno accordingly.

See Also
23.1 (dup), 14.9 (open), 14.1 (close), 14.2 (_close), 14.5 (_fileno), 14.10 (read)

14.5 _ fileno

Synopsis

Get the underlying integer file descriptor
Usage

Int_Type _fileno (File_Type|FD_Type fp)

Description

The _fileno function returns the underlying integer descriptor for a specified stdio File_Type
or FD_Type object. Upon failure it returns -1 and sets errno accordingly.

See Also
14.6 (fileno), 13.9 (fopen), 14.9 (open), 13.2 (fclose), 14.1 (close), 14.3 (dup_fd)

14.6. fileno 147

14.6 fileno

Synopsis

Convert a stdio File_Type object to a FD_Type descriptor
Usage

FD_Type fileno (File_Type fp)
Description

The fileno function returns the FD_Type descriptor associated with the stdio File_Type file
pointer. Upon failure, NULL is returned.

Notes
Closing the resulting file descriptor will have no effect.

See Also

13.9 (fopen), 14.9 (open), 13.2 (fclose), 14.1 (close), 14.3 (dup fd), 14.5 (_fileno)

14.7 isatty

Synopsis

Determine if an open file descriptor refers to a terminal
Usage

Int_Type isatty (FD_Type or File_Type fd)
Description

This function returns 1 if the file descriptor £d refers to a terminal; otherwise it returns 0.
The object £d may either be a File_Type stdio descriptor or a lower-level FD_Type object.

See Also
13.9 (fopen), 13.2 (fclose), 14.6 (fileno)

14.8 lseek

Synopsis
Reposition a file descriptor’s file pointer
Usage
Long_Type lseek (FD_Type fd, LLong_Type ofs, int mode) The lseek function reposi-

tions the file pointer associated with the open file descriptor £d to the offset ofs according to
the mode parameter. Specifically, mode must be one of the values:

SEEK_SET Set the offset to ofs from the beginning of the file
SEEK_CUR Add ofs to the current offset

SEEK_END Add ofs to the current file size

148 Chapter 14. Low-level POSIX I/0O functions

Upon error, 1seek returns -1 and sets errno. If successful, it returns the new filepointer offset.

Notes

Not all file descriptors are capable of supporting the seek operation, e.g., a descriptor associated
with a pipe.

By using SEEK_END with a positive value of the ofs parameter, it is possible to position the
file pointer beyond the current size of the file.

See Also
13.15 (fseek), 13.16 (ftell), 14.9 (open), 14.1 (close)

14.9 open

Synopsis
Open a file
Usage
FD_Type open (String Type filename, Int_Type flags [,Int_Type mode])

Description

The open function attempts to open a file specified by the filename parameter according to
the flags parameter, which must be one of the following values:

0_RDONLY (read-only)
0_WRONLY (write-only)
0_RDWR (read/write)

In addition, flags may also be bitwise-or’d with any of the following:

O_BINARY (open the file in binary mode)

0_TEXT (open the file in text mode)

0_CREAT (create the file if it does not exist)

0_EXCL (fail if the file already exists)

0_NOCTTY (do not make the device the controlling terminal)
0_TRUNC (truncate the file if it exists)

0_APPEND (open the file in append mode)
0_NONBLOCK (open the file in non-blocking mode)

Some of these flags make sense only when combined with other flags. For example, if O EXCL
is used, then O _CREAT must also be specified, otherwise unpredictable behavior may result.

If 0_CREAT is used for the flags parameter then the mode parameter must be present. mode
specifies the permissions to use if a new file is created. The actual file permissions will be
affected by the process’s umask via mode&~umask. The mode parameter’s value is constructed
via bitwise-or of the following values:

S_IRWXU (Owner has read/write/execute permission)
S_IRUSR (Owner has read permission)
S_IWUSR (Owner has write permission)

S_IXUSR (Owner has execute permission)

14.10. read 149

S_IRWXG (Group has read/write/execute permission)

S_IRGRP (Group has read permission)

S_IWGRP (Group has write permission)

S_IXGRP (Group has execute permission)

S_IRWXO (Others have read/write/execute permission)
S_IROTH (Others have read permission)

S_IWOTH (Others have write permission)

S_IX0TH (Others have execute permission)

Upon success open returns a file descriptor object (FD_Type), otherwise NULL is returned and
errno is set.

Notes

If you are not familiar with the open system call, then it is recommended that you use fopen
instead and use the higher level stdio interface.

See Also
13.9 (fopen), 14.1 (close), 14.10 (read), 14.11 (write), 16.15 (stat_file)

14.10 read

Synopsis

Read from an open file descriptor

Usage
UInt_Type read (FD_Type fd, Ref_Type buf, UInt_Type num)

Description

The read function attempts to read at most num bytes into the variable indicated by buf from
the open file descriptor £d. It returns the number of bytes read, or -1 upon failure and sets
errno. The number of bytes read may be less than num, and will be zero if an attempt is made
to read past the end of the file.

Notes

read is a low-level function and may return -1 for a variety of reasons. For example, if non-
blocking I/O has been specified for the open file descriptor and no data is available for reading
then the function will return -1 and set errno to EAGAIN.

See Also
13.13 (fread), 14.9 (open), 14.1 (close), 14.11 (write)

14.11 write

Synopsis

Write to an open file descriptor

150 Chapter 14. Low-level POSIX I/0O functions

Usage
UInt_Type write (FD_Type fd, BString_Type buf)
Description

The write function attempts to write the bytes specified by the buf parameter to the open
file descriptor £d. It returns the number of bytes successfully written, or -1 and sets errno
upon failure. The number of bytes written may be less than length(buf).

See Also
14.10 (read), 13.17 (fwrite), 14.9 (open), 14.1 (close)

Chapter 15

Signal Functions

15.1 alarm

Synopsis

Schedule an alarm signal

Usage

alarm (UInt_Type secs [, Ref_Type secs_remaining])

Description

The alarm function schedules the delivery of a SIGALRM signal in secs seconds. Any previously
scheduled alarm will be canceled. If secs is zero, then no new alarm will be scheduled. If
the second argument is present, then it must be a reference to a variable whose value will be
set upon return to the number of seconds remaining for a previously scheduled alarm to take
place.

Example

This example demonstrates how the alarm function may be used to read from stdin within a
specified amount of time:

define sigalrm_handler (sig)

{
throw ReadError, "Read timed out";
}
define read_or_timeout (secs)
{

variable line, err;
signal (SIGALRM, &sigalrm_handler);
() = fputs ("Enter some text> ", stdout); () = fflush (stdout);
alarm (secs);
try (err)
{
if (-1 == fgets (&line, stdin))

throw ReadError, "Failed to read from stdin";

151

152 Chapter 15. Signal Functions

}
catch IOError:
{
message (err.message);
return NULL;
}

return line;

Notes

Some operating systems may implement the sleep function using alarm. As a result, it is not
a good idea to mix calls to alarm and sleep.

The default action for SIGALRM is to terminate the process. Hence, if alarm is called it is wise
to establish a signal handler for SIGALRM.

See Also
15.4 (signal), 18.20 (sleep), 15.3 (setitimer), 15.2 (getitimer)

15.2 getitimer

Synopsis
Get the value of an interval timer
Usage

(secs, period) = getitimer (Int_Type timer)

Description

This function returns the value of the specified interval timer as a pair of double precision

values: period and secs.

The value of secs indicates the number of seconds remaining before the timer expires. A value
of 0 for secs indicates that the timer is inactive. The value of period indicates the periodicity
of the timer. That is, when the timer goes off, it will automatically be reset to go off again
after period seconds.

There are 3 interval timers available: ITIMER_REAL, ITIMER_VIRTUAL, and ITIMER_PROF.

The ITIMER_REAL timer operates in real time and when the time elapses, a SIGALRM will be
sent to the process.

The ITIMER_VIRTUAL timer operates in the virtual time of the process; that is, when process
is actively running. When it elapses, SIGVTALRM will be sent to the process.

The ITIMER_PROF operates when the process is actively running, or when the kernel is per-
forming a task on behalf of the process. It sends a SIGPROF signal to the process.

Notes
The interaction between these timers and the sleep and alarm functions is OS dependent.

The resolution of a timer is system dependent; typical values are on the order of milliseconds.

See Also
15.3 (setitimer), 15.1 (alarm), 15.4 (signal)

15.3.

setitimer 153

15.3 setitimer

Synopsis

Set the value of an interval timer

Usage

setitimer (Int_Type timer, secs [, period] [,&old_secs, &old_period])

Description

See

This function sets the value of a specified interval timer, and optionally returns the previous
value. The value of the timer argument must be one of the 3 interval timers ITIMER_REAL,
ITIMER_VIRTUAL, or ITIMER_PROF. See the documentation for the getitimer function for
information about the semantics of these timers.

The value of the secs parameter specifies the expiration time for the timer. If this value is
0, the timer will be disabled. Unless a non-zero value for the optional period parameter is
given, the timer will be disabled after it expires. Otherwise, the timer will reset to go off with
a period of period seconds.

The final two optional arguments are references to variables that will be set to the previous
values associated with the timer.

Also
15.2 (getitimer), 15.1 (alarm), 15.4 (signal)

15.4 signal

Synopsis

Establish a signal handler

Usage

signal (Int_Type sig, Ref_Type func [,Ref_Type old_func])

Description

The signal function assigns the signal handler represented by func to the signal sig. Here
func is usually reference to a function that takes an integer argument (the signal) and returns
nothing, e.g.,

define signal_handler (sig)
{
return;

}
Alternatively, func may be given by one of the symbolic constants SIG_IGN or SIG_DFL to
indicate that the signal is to be ignored or given its default action, respectively.

The first parameter, sig, specifies the signal to be handled. The actual supported values vary
with the OS. Common values on Unix include SIGHUP, SIGINT, and SIGTERM.

If a third argument is present, then it must be a reference to a variable whose value will be
set to the value of the previously installed handler.

154 Chapter 15. Signal Functions

Example

This example establishes a handler for SIGTSTP.

static define sig_suspend (); % forward declaration

static define sig_suspend (sig)
{
message ("SIGTSTP received-- stopping");
signal (sig, SIG_DFL);
() = kill (getpid(), SIGSTOP);
message ("Resuming");
signal (sig, &sig_suspend);

}
signal (SIGTSTP, &sig_suspend);

Notes

Currently the signal interface is supported only on systems that implement signals according
to the POSIX standard.

Once a signal has been received, it will remain blocked until after the signal handler has
completed. This is the reason SIGSTOP was used in the above signal handler instead of SIGTSTP.

See Also
15.1 (alarm), 15.6 (sigsuspend), 15.5 (sigprocmask)

15.5 sigprocmask

Synopsis
Change the list of currently blocked signals

Usage
sigprocmask (Int_Type how, Array_Type mask [,Ref_Type old_mask])

Description

The sigprocmask function may be used to change the list of signals that are currently blocked.
The first parameter indicates how this is accomplished. Specifically, how must be one of the
following values: SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK.

If how is SIG_BLOCK, then the set of blocked signals will be the union the current set with the
values specified in the mask argument.

If how is SIG_UNBLOCK, then the signals specified by the mask parameter will be removed from
the currently blocked set.

If how is SIG_SETMASK, then the set of blocked signals will be set to those given by the mask.

If a third argument is present, then it must be a reference to a variable whose value will be
set to the previous signal mask.

See Also
15.4 (signal), 15.6 (sigsuspend), 15.1 (alarm)

15.6. sigsuspend 155

15.6 sigsuspend

Synopsis

Suspend the process until a signal is delivered

Usage
sigsuspend ([Array_Type signal_mask])

Description

The sigsuspend function suspends the current process until a signal is received. An optional
array argument may be passed to the function to specify a list of signals that should be
temporarily blocked while waiting for a signal.

Example

The following example pauses the current process for 10 seconds while blocking the SIGHUP
and SIGINT signals.

static variable Tripped;
define sigalrm_handler (sig)
{
Tripped = 1;
}
signal (SIGALRM, &sigalrm_handler);
Tripped = 0;
alarm (10);
while (Tripped == 0) sigsuspend ([SIGHUP, SIGINT]);

Note that in this example the call to sigsuspend was wrapped in a while-loop. This was
necessary because there is no guarantee that another signal would not cause sigsuspend to
return.

See Also
15.4 (signal), 15.1 (alarm), 15.5 (sigprocmask)

156 Chapter 15. Signal Functions

Chapter 16

Directory Functions

16.1 access

Synopsis

Check to see if a file is accessible

Usage

Int_Type access (String_Type pathname, Int_Type mode)

Description

This functions checks to see if the current process has access to the specified pathname. The

mode parameter determines the type of desired access. Its value is given by the bitwise-or of

one or more of the following constants:

R_OK
W_0OK
X_0K
F_OK

Check for
Check for
Check for
Check for

read permission
write permission
execute permission

existence

The function will return 0 if process has the requested access permissions to the file, otherwise

it will return -1 and set errno accordingly.

Access to a file depend not only upon the file itself, but also upon the permissions of each of

the directories in the pathname. The checks are done using the real user and group ids of the

process, and not using the effective ids.

See Also

16.15 (stat_file)

16.2 chdir

Synopsis

Change the current working directory

157

158 Chapter 16. Directory Functions

Usage
Int_Type chdir (String_Type dir)

Description

The chdir function may be used to change the current working directory to the directory
specified by dir. Upon success it returns zero. Upon failure it returns -1 and sets errno
accordingly.

See Also
16.10 (mkdir), 16.15 (stat _file)

16.3 chmod

Synopsis
Change the mode of a file
Usage
Int_Type chmod (String_Type file, Int_Type mode)

Description

The chmod function changes the permissions of the specified file to those given by mode. It
returns 0 upon success, or -1 upon failure setting errno accordingly.

See the system specific documentation for the C library function chmod for a discussion of the
mode parameter.

See Also
16.4 (chown), 16.15 (stat_file)

16.4 chown

Synopsis

Change the owner of a file
Usage

Int_Type chown (String Type file, Int_Type uid, Int_Type gid)
Description

The chown function is used to change the user-id and group-id of file to uid and gid,
respectively. It returns 0 upon success and -1 upon failure, with errno set accordingly.

Notes
On most systems, only the superuser can change the ownership of a file.

Some systems do not support this function.

See Also
16.7 (Ichown), 16.3 (chmod), 16.15 (stat_file)

16.5. getcwd 159

16.5 getcwd

Synopsis

Get the current working directory
Usage

String_Type getcwd ()

Description
The getcwd function returns the absolute pathname of the current working directory. If an
error occurs or it cannot determine the working directory, it returns NULL and sets errno
accordingly.
Notes
Under Unix, OS/2, and MSDOS, the pathname returned by this function includes the trailing
slash character. It may also include the drive specifier for systems where that is meaningful.
See Also
16.10 (mkdir), 16.2 (chdir), 10.1 (errno)

16.6 hardlink

Synopsis

Create a hard-link
Usage

Int_Type hardlink (String_Type oldpath, String_Type newpath)
Description

The hardlink function creates a hard-link called newpath to the existing file oldpath. If the
link was successfully created, the function will return 0. Upon error, the function returns -1
and sets errno accordingly.

Notes

Not all systems support the concept of a hard-link.

See Also
16.18 (symlink)

16.7 lchown

Synopsis
Change the owner of a file
Usage
Int_Type lchown (String Type file, Int_Type uid, Int_Type gid)

160 Chapter 16. Directory Functions

Description

The 1chown function is like chown, except that it does not dereference a symbolic link. Hence,
it may be used to change the ownership of a symbolic link itself, and not to what it references.
See the documentation for the chown function for more details.

See Also
16.4 (chown), 16.3 (chmod), 16.15 (stat_file)

16.8 listdir

Synopsis

Get a list of the files in a directory

Usage

String_Type[] listdir (String_Type dir)

Description

The 1istdir function returns the directory listing of all the files in the specified directory dir
as an array of strings. It does not return the special files ".." and "." as part of the list.

See Also
16.15 (stat_file), 16.16 (stat_is), 2.13 (length)

16.9 Istat file

Synopsis

Get information about a symbolic link

Usage

Struct_Type lstat_file (String Type file)

Description

The 1stat_file function behaves identically to stat_file but if file is a symbolic link,
1stat_file returns information about the link itself, and not the file that it references.

See the documentation for stat_file for more information.

Notes

On systems that do not support symbolic links, there is no difference between this function
and the stat_file function.

See Also
16.15 (stat_file), 16.16 (stat_is), 16.17 (stat _mode to_string), 16.11 (readlink)

16.10. mkdir 161

16.10 mkdir

Synopsis

Create a new directory

Usage
Int_Type mkdir (String_Type dir [,Int_Type mode])

Description
The mkdir function creates a directory whose name is specified by the dir parameter with
permissions given by the optional mode parameter. Upon success mkdir returns 0, or it returns
-1 upon failure setting errno accordingly. In particular, if the directory already exists, the
function will fail and set errno to EEXIST.

Example
The following function creates a new directory, if it does not already exist (indicated by

errno==EEXIST).

define my_mkdir (dir)
{
if (0 == mkdir (dir)) return;
if (errno == EEXIST) return;
throw IOError,
sprintf ("mkdir %s failed: Js", dir, errno_string (errno));

Notes

The mode parameter may not be meaningful on all systems. On systems where it is meaningful,
the actual permissions on the newly created directory are modified by the process’s umask.

See Also
16.14 (rmdir), 16.5 (getcwd), 16.2 (chdir), 13.9 (fopen), 10.1 (errno)

16.11 readlink

Synopsis
String_Type readlink (String_ Type path)

Usage

Get the value of a symbolic link

Description
The readlink function returns the value of a symbolic link. Upon failure, NULL is returned
and errno set accordingly.

Notes

Not all systems support this function.

162 Chapter 16. Directory Functions

See Also
16.18 (symlink), 16.9 (Istat_file), 16.15 (stat_file), 16.16 (stat_is)

16.12 remove

Synopsis
Delete a file

Usage
Int_Type remove (String _Type file)

Description

The remove function deletes a file. It returns 0 upon success, or -1 upon error and sets errno
accordingly.

See Also
16.13 (rename), 16.14 (rmdir)

16.13 rename

Synopsis
Rename a file
Usage
Int_Type rename (String Type old, String Type new)

Description

The rename function renames a file from old to new moving it between directories if necessary.
This function may fail if the directories are not on the same file system. It returns 0 upon
success, or -1 upon error and sets errno accordingly.

See Also
16.12 (remove), 10.1 (errno)

16.14 rmdir

Synopsis
Remove a directory
Usage
Int_Type rmdir (String_Type dir)

Description

The rmdir function deletes the specified directory. It returns 0 upon success or -1 upon error
and sets errno accordingly.

16.15. stat file 163

Notes

The directory must be empty before it can be removed.

See Also
16.13 (rename), 16.12 (remove), 16.10 (mkdir)

16.15 stat_file

Synopsis

Get information about a file

Usage

Struct_Type stat_file (String_ Type file)

Description

The stat_file function returns information about file through the use of the system stat
call. If the stat call fails, the function returns NULL and sets errno accordingly. If it is successful,
it returns a stat structure with the following integer-value fields:

st_dev
st_ino
st_mode
st_nlink
st_uid
st_gid
st_rdev
st_size
st_atime
st_mtime

st_ctime
See the C library documentation of stat for a discussion of the meanings of these fields.

Example

The following example shows how the stat_file function may be used to get the size of a file:

define file_size (file)
{
variable st;
st = stat_file(file);
if (st == NULL)
throw IOError, "Unable to stat $file"$;

return st.st_size;

See Also
16.9 (Istat _file), 16.16 (stat_is), 16.17 (stat_mode to_string), 16.19 (utime)

164 Chapter 16. Directory Functions

16.16 stat_is

Synopsis
Parse the st_mode field of a stat structure
Usage
Char_Type stat_is (String Type type, Int_Type st_mode)

Description

The stat_is function returns a boolean value according to whether or not the st_mode pa-
rameter is of the specified type. Specifically, type must be one of the strings:

"sock" (socket)

"fifo" (fifo)

"blk" (block device)
"chr" (character device)
"reg" (regular file)
"lnk" (1ink)

"dir" (dir)

It returns a non-zero value if st_mode corresponds to type.

Example
The following example illustrates how to use the stat_is function to determine whether or

not a file is a directory:

define is_directory (file)
{

variable st;

st = stat_file (file);
if (st == NULL) return O;

return stat_is ("dir", st.st_mode);

See Also
16.15 (stat_file), 16.9 (Istat_file), 16.17 (stat_mode_to_string)

16.17 stat mode_ to_ string

Synopsis

Format the file type code and access permission bits as a string

Usage
String Type stat_mode_to_string (Int_Type st_mode)

Description
The stat_mode_to_string function returns a 10 characters string that indicates the type and
permissions of a file as represented by the st_mode parameter. The returned string consists of
the following characters:

16.18. symlink

165

gt (socket)

"p" (fifo)

"p" (block device)

et (character device)
"_n (regular file)

" (1ink)

"q" (dir)

The access permission bit is one of the following characters:

(set-user-id)
(writable)
(executable)
(readable)

S"
wll
”X”
rll
Notes
This function is an slsh intrinsic. As such, it is not part of S-Lang proper.
See Also
16.15 (stat_file), 16.9 (Istat_file), 16.16 (stat_is)

16.18 symlink

Synopsis

Create a symbolic link
Usage

Int_Type symlink (String Type oldpath, String Type new_path)
Description

The symlink function may be used to create a symbolic link named new_path for oldpath. If
successful, the function returns 0, otherwise it returns -1 and sets errno appropriately.

Notes

This function is not supported on all systems and even if supported, not all file systems support
the concept of a symbolic link.

See Also
16.11 (readlink), 16.6 (hardlink)

16.19 utime

Synopsis
Change a file’s last access and modification times
Usage

Int_Type utime(String Type file, Double_Type actime, Double_Type modtime)

166 Chapter 16. Directory Functions

Description

This function may be used to change the last access (actime) and last modification (modtime)
times associated with the specified file. If sucessful, the function returns 0; otherwise it returns
-1 and sets errno accordingly.

Notes

The utime function will call the C library utimes function if available, which permits mi-
crosecond accuracy. Otherwise, it will truncate the time arguments to integers and call the
utime function.

See Also
16.15 (stat_file)

Chapter 17

Functions that Parse Filenames

17.1 path basename

Synopsis
Get the basename part of a filename
Usage
String Type path_basename (String Type filename)

Description
The path_basename function returns the basename associated with the filename parameter.
The basename is the non-directory part of the filename, e.g., on unix c is the basename of
/a/b/c.

See Also
17.4 (path_dirname), 17.5 (path_extname), 17.3 (path_concat), 17.7 (path_is_absolute)

17.2 path basename sans extname

Synopsis
Get the basename part of a filename but without the extension
Usage

String Type path_basename_sans_extname (String_Type path)

Description

The path_basename_sans_extname function returns the basename associated with the
filename parameter, omitting the extension if present. The basename is the non-directory
part of the filename, e.g., on unix c is the basename of /a/b/c.

See Also

17.4 (path_ dirname), 17.1 (path_basename), 17.5 (path_extname), 17.3 (path_concat), 17.7
(path_is_absolute)

167

168 Chapter 17. Functions that Parse Filenames

17.3 path_concat

Synopsis
Combine elements of a filename
Usage

String_Type path_concat (String Type dir, String_Type basename)

Description

The path_concat function combines the arguments dir and basename to produce a filename.
For example, on Unix if dir is x/y and basename is z, then the function will return x/y/z.

See Also
17.4 (path dirname), 17.1 (path _basename), 17.5 (path _extname), 17.7 (path _is_absolute)

17.4 path dirname

Synopsis

Get the directory name part of a filename

Usage

String Type path_dirname (String_Type filename)

Description

The path_dirname function returns the directory name associated with a specified filename.

Notes

On systems that include a drive specifier as part of the filename, the value returned by this
function will also include the drive specifier.

See Also
17.1 (path_basename), 17.5 (path _extname), 17.3 (path_concat), 17.7 (path is_absolute)

17.5 path extname

Synopsis

Return the extension part of a filename

Usage

String Type path_extname (String_Type filename)

Description

The path_extname function returns the extension portion of the specified filename. If an
extension is present, this function will also include the dot as part of the extension, e.g., if
filename is "file.c", then this function will return ".c". If no extension is present, the
function returns an empty string "".

17.6. path get delimiter 169

Notes

Under VMS, the file version number is not returned as part of the extension.

See Also

17.8 (path_sans_extname), 17.4 (path_dirname), 17.1 (path_basename), 17.3
(path__concat), 17.7 (path _is_absolute)

17.6 path get delimiter

Synopsis
Get the value of a search-path delimiter

Usage
Char_Type path_get_delimiter ()

Description

This function returns the value of the character used to delimit fields of a search-path.

See Also
19.7 (set _slang load path), 19.6 (get slang load path)

17.7 path is absolute

Synopsis
Determine whether or not a filename is absolute
Usage
Int_Type path_is_absolute (String Type filename)

Description

The path_is_absolute function will return non-zero is filename refers to an absolute file-
name, otherwise it returns zero.

See Also
17.4 (path_dirname), 17.1 (path_basename), 17.5 (path_extname), 17.3 (path_ concat)

17.8 path sans extname
Synopsis
Strip the extension from a filename

Usage

String Type path_sans_extname (String Type filename)

170 Chapter 17. Functions that Parse Filenames

Description

The path_sans_extname function removes the file name extension (including the dot) from
the filename and returns the result.

See Also

17.2 (path basename sans extname), 17.5 (path extname), 17.1 (path basename), 17.4
(path_dirname), 17.3 (path _concat)

Chapter 18

System Call Functions

18.1 getegid

Synopsis
Get the effective group id of the current process
Usage
Int_Type getegid ()
Description
The getegid function returns the effective group ID of the current process.
Notes

This function is not supported by all systems.

See Also
18.3 (getgid), 18.2 (geteuid), 18.15 (setgid)

18.2 geteuid

Synopsis
Get the effective user-id of the current process
Usage
Int_Type geteuid ()
Description
The geteuid function returns the effective user-id of the current process.
Notes

This function is not supported by all systems.

See Also
18.11 (getuid), 18.19 (setuid), 18.15 (setgid)

171

172 Chapter 18. System Call Functions

18.3 getgid

Synopsis

Get the group id of the current process
Usage

Integer_Type getgid ()
Description

The getgid function returns the real group id of the current process.

Notes

This function is not supported by all systems.

See Also
18.6 (getpid), 18.7 (getppid)

18.4 getpgid

Synopsis

Get the process group id
Usage

Int_Type getpgid (Int_Type pid)
Description

The getpgid function returns the process group id of the process whose process is pid. If pid
is 0, then the current process will be used.

Notes

This function is not supported by all systems.

See Also
18.5 (getpgrp), 18.6 (getpid), 18.7 (getppid)

18.5 getpgrp
Synopsis
Get the process group id of the calling process
Usage
Int_Type getpgrp ()
Description

The getpgrp function returns the process group id of the current process.

18.6. getpid

173

Notes

This function is not supported by all systems.

See Also
18.4 (getpgid), 18.6 (getpid), 18.7 (getppid)

18.6 getpid

Synopsis

Get the current process id

Usage
Integer_Type getpid ()

Description

The getpid function returns the current process identification number.

See Also
18.7 (getppid), 18.3 (getgid)

18.7 getppid
Synopsis
Get the parent process id

Usage
Integer_Type getppid ()

Description

The getpid function returns the process identification number of the parent process.

Notes

This function is not supported by all systems.

See Also
18.6 (getpid), 18.3 (getgid)

18.8 getpriority
Synopsis
Get a process’s scheduling priority

Usage

result = getpriority (which, who)

174

Chapter 18. System Call Functions

Description

See

The setpriority function may be used to obtain the kernel’s scheduling priority for a pro-
cess, process group, or a user depending upon the values of the which and who parameters.
Specifically, if the value of which is PRIO_PROCESS, then the value of who specifies the process
id of the affected process. If which is PRIO_PGRP, then who specifies a process group id. If
which is PRIO_USER, then the value of who is interpreted as a user id. For the latter two cases,
where which refers to a set of processes, the value returned corresponds to the highest priority
of a process in the set. A value of 0 may be used for who to denote the process id, process
group id, or real user ID of the current process.

Upon success, the function returns the specified priority value. If an error occurs, the function
will return NULL with errno set accordingly.

Also
18.17 (setpriority), 18.6 (getpid), 18.7 (getppid)

18.9 getrusage

Synopsis

Get process resource usage

Usage

Struct_Type getrusage ([Int_Type whol

Description

This function returns a structure whose fields contain information about the resource usage
of calling process, summed over all threads of the process. The optional integer argument
who may be used to obtain resource usage of child processes, or of the calling thread itself.
Specifically, the optional integer argument who may take on one of the following values:

RUSAGE_SELF (default)
RUSAGE_CHILDREN

If RUSAGE_CHILDREN is specified, then the process information will be the sum of all descendents
of the calling process that have terminated and have been waited for (via, e.g., waitpid). It
will not contain any information about child processes that have not terminated.

The structure that is returned will contain the following fields:

ru_utimesecs user CPU time used (Double_Type secs)
ru_stimesecs system CPU time used (Double_Type secs)
ru_maxrss maximum resident_set_size

ru_minflt page reclaims (soft page faults)
ru_majflt page faults (hard page faults)
ru_inblock block input operations

ru_oublock block output operations

ru_nvcsw voluntary context switches

ru_nivcsw involuntary context switches

ru_ixrss integral shared memory size

ru_idrss integral unshared data size

18.10. getsid 175

ru_isrss integral unshared stack size
ru_nswap swaps

ru_msgsnd IPC messages sent

ru_msgrcv IPC messages received
ru_nsignals signals received

Some of the fields may not be supported for a particular OS or kernel version. For example,
on Linux the 2.6.32 kernel supports only the following fields:

ru_utimesecs

ru_stimesecs

ru_maxrss (since Linux 2.6.32)
ru_minflt

ru_majflt

ru_inblock (since Linux 2.6.22)
ru_oublock (since Linux 2.6.22)
ru_nvcsw (since Linux 2.6)

ru_nivcsw (since Linux 2.6)

Notes

The underlying system call returns the CPU user and system times as C struct timeval
objects. For convenience, the interpreter interface represents these objects as double precision
floating point values.

See Also
11.11 (times)

18.10 getsid

Synopsis
get the session id of a process
Usage
Int_Type getsid ([Int_Type pid])

Description

The getsid function returns the session id of the current process. If the optional integer pid
argument is given, then the function returns the session id of the specified process id.

See Also
18.18 (setsid), 18.6 (getpid), 18.6 (getpid)

18.11 getuid

Synopsis

Get the user-id of the current process

176 Chapter 18.

System Call Functions

Usage
Int_Type getuid ()

Description

The getuid function returns the user-id of the current process.

Notes

This function is not supported by all systems.

See Also
18.11 (getuid), 18.1 (getegid)

18.12 kill

Synopsis

Send a signal to a process

Usage
Integer_Type kill (Integer_Type pid, Integer_Type sig)

Description

This function may be used to send a signal given by the integer sig to the process specified

by pid. The function returns zero upon success or -1 upon failure setting errno accordingly.

Example

The kill function may be used to determine whether or not a specific process exists:

define process_exists (pid)

{
if (-1 == kill (pid, 0))
return 0; % Process does not exist
return 1;
}

Notes

This function is not supported by all systems.

See Also
18.13 (killpg), 18.6 (getpid)

18.13 Kkillpg

Synopsis

Send a signal to a process group

Usage

Integer_Type killpg (Integer_Type pgrppid, Integer_Type sig)

18.14. mkfifo 177

Description

This function may be used to send a signal given by the integer sig to the process group
specified by pgrppid. The function returns zero upon success or -1 upon failure setting errno
accordingly.

Notes
This function is not supported by all systems.

See Also
18.12 (kill), 18.6 (getpid)

18.14 mbkfifo

Synopsis

Create a named pipe
Usage

Int_Type mkfifo (String Type name, Int_Type mode)
Description

The mkfifo attempts to create a named pipe with the specified name and mode (modified by
the process’s umask). The function returns 0 upon success, or -1 and sets errno upon failure.

Notes

Not all systems support the mkfifo function and even on systems that do implement the
mkfifo system call, the underlying file system may not support the concept of a named pipe,
e.g, an NFS filesystem.

See Also
16.15 (stat_file)

18.15 setgid

Synopsis

Set the group-id of the current process
Usage

Int_Type setgid (Int_Type gid)
Description

The setgid function sets the effective group-id of the current process. It returns zero upon
success, or -1 upon error and sets errno appropriately.

Notes
This function is not supported by all systems.

See Also
18.3 (getgid), 18.19 (setuid)

178 Chapter 18. System Call Functions

18.16 setpgid

Synopsis
Set the process group-id

Usage
Int_Type setpgid (Int_Type pid, Int_Type gid)

Description

The setpgid function sets the group-id gid of the process whose process-id is pid. If pid is
0, then the current process-id will be used. If pgid is 0, then the pid of the affected process
will be used.

If successful 0 will be returned, otherwise the function will return -1 and set errno accordingly.

Notes

This function is not supported by all systems.

See Also
18.15 (setgid), 18.19 (setuid)

18.17 setpriority

Synopsis

Set the scheduling priority for a process

Usage

Int_Type setpriority (which, who, prio)

Description

The setpriority function may be used to set the kernel’s scheduling priority for a process,
process group, or a user depending upon the values of the which and who parameters. Specif-
ically, if the value of which is PRIO_PROCESS, then the value of who specifies the process id of
the affected process. If which is PRIO_PGRP, then who specifies a process group id. If which
is PRIO_USER, then the value of who is interpreted as a user id. A value of 0 may be used for
who to denote the process id, process group id, or real user ID of the current process.

Upon sucess, the setpriority function returns 0. If an error occurs, -1 is returned and errno
will be set accordingly.

Example

The getpriority and setpriority functions may be used to implement a nice function for
incrementing the priority of the current process as follows:

define nice (dp)

{
variable p = getpriority (PRIO_PROCESS, 0);
if (p == NULL)

return -1;

18.18. setsid 179

variable s = setpriority (PRIO_PROCESS, 0, p + dp);
if (s == -1)

return -1;
return getpriority (PRIO_PROCESS, 0);

Notes

Priority values are sometimes called "nice" values. The actual range of priority values is system
dependent but commonly range from -20 to 20, with -20 being the highest scheduling priority,
and +20 the lowest.

See Also
18.8 (getpriority), 18.6 (getpid)

18.18 setsid

Synopsis

Create a new session for the current process
Usage

Int_Type setsid ()
Description

If the current process is not a session leader, the setsid function will create a new session and
make the process the session leader for the new session. It returns the the process group id of
the new session.

Upon failure, -1 will be returned and errno set accordingly.

See Also
18.10 (getsid), 18.16 (setpgid)

18.19 setuid

Synopsis

Set the user-id of the current process
Usage

Int_Type setuid (Int_Type id)
Description

The setuid function sets the effective user-id of the current process. It returns zero upon
success, or -1 upon error and sets errno appropriately.

Notes
This function is not supported by all systems.

See Also
18.15 (setgid), 18.16 (setpgid), 18.11 (getuid), 18.2 (geteuid)

180 Chapter 18. System Call Functions

18.20 sleep

Synopsis
Pause for a specified number of seconds

Usage

sleep (Double_Type n)

Description

The sleep function delays the current process for the specified number of seconds. If it is
interrupted by a signal, it will return prematurely.

Notes

Not all system support sleeping for a fractional part of a second.

18.21 system

Synopsis
Execute a shell command
Usage
Integer_Type system (String_Type cmd)

Description

The system function may be used to execute the string expression cmd in an inferior shell.
This function is an interface to the C system function which returns an implementation-defined
result. On Linux, it returns 127 if the inferior shell could not be invoked, -1 if there was some
other error, otherwise it returns the return code for cmd.

Example

define dir ()
{
() = system ("DIR");

displays a directory listing of the current directory under MSDOS or VMS.

See Also
18.22 (system_intr), ?? (new_process), 13.19 (popen)

18.22 system intr

Synopsis

Execute a shell command

18.23. umask

Usage

Integer_Type system_intr (String_Type cmd)

Description

The system_intr function performs the same task as the system function, except that the

SIGINT signal will not be ignored by the calling process.

script calls system_intr function, and Ctrl-C is pressed, both the command invoked by the
system_intr function and the script will be interrupted. In contrast, if the command were
invoked using the system function, only the command called by it would be interrupted, but

the script would continue executing.

See Also

18.21 (system), ?? (new _process), 13.19 (popen)

18.23 umask

Synopsis

Set the file creation mask

Usage

Int_Type umask (Int_Type m)

Description

The umask function sets the file creation mask to the value of m and returns the previous mask.

See Also
16.15 (stat_file)

18.24 uname
Synopsis
Get the system name

Usage

Struct_Type uname ()

Description

The uname function returns a structure containing information about the operating system.

The structure contains the following fields:

sysname (Name of
nodename (Name of
release (Release
version (Current

machine (Name of

the operating system)

the node within the network)
level of the 0S)

version of the release)

the hardware)

This means that if a S-Lang

182

Chapter 18. System Call Functions

Notes

Not all systems support this function.

See Also
25.8 (getenv)

Chapter 19

Eval Functions

19.1 $

Synopsis

Expand the dollar-escaped variables in a string
Usage

String_Type _$(String_Type s)

Description

This function expands the dollar-escaped variables in a string and returns the resulting string.

Example

Consider the following code fragment:

private variable Format = "/tmp/foo-$time.$pid";
define make_filename ()
{

variable pid = getpid ();

variable time = _time ();

return _$(Format);

}

Note that the variable Format contains dollar-escaped variables, but because the $ suffix was
omitted from the string literal, the variables are not expanded. Instead expansion is deferred
until execution of the make_filename function through the use of the _$ function.

See Also
19.4 (eval), 25.8 (getenv)

19.2 autoload

Synopsis

Load a function from a file

183

184 Chapter 19. Eval Functions

Usage
autoload (String_Type funct, String_Type file)

Description

The autoload function is used to declare funct to the interpreter and indicate that it should
be loaded from file when it is actually used. If func contains a namespace prefix, then the
file will be loaded into the corresponding namespace. Otherwise, if the autoload function
is called from an execution namespace that is not the Global namespace nor an anonymous
namespace, then the file will be loaded into the execution namespace.

Example
Suppose bessel_jO0 is a function defined in the file bessel.sl. Then the statement
autoload ("bessel_jO", "bessel.sl");
will cause bessel. sl to be loaded prior to the execution of bessel_jo0.

See Also
19.5 (evalfile), 21.2 (import)

19.3 byte compile file

Synopsis
Compile a file to byte-code for faster loading.
Usage
byte_compile_file (String Type file, Int_Type method)

Description

The byte_compile_file function byte-compiles file producing a new file with the same name
except a ’c’ is added to the output file name. For example, file is "site.sl", then this
function produces a new file named site.slc.

Notes

The method parameter is not used in the current implementation, but may be in the future.
For now, set it to 0.

See Also
19.5 (evalfile)

19.4 eval

Synopsis
Interpret a string as S-Lang code
Usage

eval (String Type expression [,String Type namespace])

19.5. evalfile 185

Description

The eval function parses a string as S-Lang code and executes the result. If called with the
optional namespace argument, then the string will be evaluated in the specified namespace. If
that namespace does not exist it will be created first.

This is a useful function in many contexts including those where it is necessary to dynamically
generate function definitions.

Example

if (0 == is_defined ("my_function"))
eval ("define my_function () { message (\"my_function\"); }");
See Also
8.9 (is_ defined), 19.2 (autoload), 19.5 (evalfile)

19.5 evalfile

Synopsis

Interpret a file containing S-Lang code

Usage
Int_Type evalfile (String_Type file [,String_Type namespace])

Description

The evalfile function loads file into the interpreter and executes it. If called with the
optional namespace argument, the file will be loaded into the specified namespace, which will
be created if necessary. If given no namespace argument and the file has already been loaded,
then it will be loaded again into an anonymous namespace. A namespace argument given by
the empty string will also cause the file to be loaded into a new anonymous namespace.

If no errors were encountered, 1 will be returned; otherwise, a S-Lang exception will be thrown
and the function will return zero.

Example
define load_file (file)
{
try
{
() = evalfile (file);
}
catch AnyError;
}
Notes

For historical reasons, the return value of this function is not really useful.

The file is searched along an application-defined load-path. The get_slang_load_path and
set_slang_load_path functions may be used to set and query the path.

186 Chapter 19. Eval Functions

See Also
19.4 (eval), 19.2 (autoload), 19.7 (set _slang load path), 19.6 (get slang load path)

19.6 get slang load path

Synopsis
Get the value of the interpreter’s load-path

Usage
String Type get_slang load_path ()

Description
This function retrieves the value of the delimiter-separated search path used for loading files.
The delimiter is OS-specific and may be queried using the path_get_delimiter function.
Notes
Some applications may not support the built-in load-path searching facility provided by the
underlying library.
See Also
19.7 (set_slang load path), 17.6 (path get delimiter)

19.7 set slang load path

Synopsis
Set the value of the interpreter’s load-path

Usage
set_slang_load_path (String_Type path)

Description

This function may be used to set the value of the delimiter-separated search path used by the
evalfile and autoload functions for locating files. The delimiter is OS-specific and may be
queried using the path_get_delimiter function.

Example

public define prepend_to_slang_load_path (p)
{

variable s = stat_file (p);

if (s == NULL) return;

if (0 == stat_is ("dir", s.st_mode))

return;

p = sprintf ("%shchs", p, path_get_delimiter (), get_slang_load_path ());
set_slang_load_path (p);

19.7. set slang load path 187

Notes
Some applications may not support the built-in load-path searching facility provided by the
underlying library.

See Also
19.6 (get _slang load path), 17.6 (path get delimiter), 19.5 (evalfile), 19.2 (autoload)

188 Chapter 19. Eval Functions

Chapter 20

Qualifier Functions

20.1 qualifier

Synopsis
Get the value of a qualifier
Usage

value = qualifier (String Type name [,default_value])

Description

This function may be used to get the value of a qualifier. If the specified qualifier does not
exist, NULL will be returned, unless a default value has been provided.

Example
define echo (text)
{
variable fp = qualifier ("out", stdout);
() = fputs (text, fp);
}
echo ("hello"); % writes hello to stdout
echo ("hello"; out=stderr); % writes hello to stderr
Notes

Since NULL is a valid value for a qualifier, this function is unable to distinguish between a
non-existent qualifier and one whose value is NULL. If such a distinction is important, the

qualifier_exists function can be used. For example,

define echo (text)

{
variable fp = stdout;
if (qualifier_exists ("use_stderr"))
fp = stderr;
() = fputs (text, fp);
}
echo ("hello"; use_stderr); % writes hello to stderr

189

190 Chapter 20. Qualifier Functions

In this case, no value was provided for the use_stderr qualifier: it exists but has a value of
NULL.

See Also
20.3 (qualifier _exists), 20.2 (_ _ qualifiers)

20.2 qualifiers

Synopsis

Get the active set of qualifiers

Usage

Struct_Type __qualifiers ()

Description

This function returns the set of qualifiers associated with the current execution context. If
qualifiers are active, then the result is a structure representing the names of the qualifiers and
their corresponding values. Otherwise NULL will be returned.

One of the main uses of this function is to pass the current set of qualifiers to another another
function. For example, consider a plotting application with a function called called lineto
that sets the pen-color before drawing the line to the specified point:

define lineto (x, y)

{
% The color may be specified by a qualifier, defaulting to black
variable color = qualifier ("color", "black");
set_pen_color (color);

}

The lineto function permits the color to be specified by a qualifier. Now consider a function
that make use of lineto to draw a line segment between two points:

define line_segment (x0, yO, x1, y1)
{
moveto (x0, yO);
lineto (x1, y1 ; color=qualifier("color", "black"));

}
line_segment (1,1, 10,10; color="blue");

Note that in this implementation of 1ine_segment, the color qualifier was explicitly passed
to the lineto function. However, this technique does not scale well. For example, the lineto
function might also take a qualifier that specifies the line-style, to be used as

line_segment (1,1, 10,10; color="blue", linestyle="solid");

But the above implementation of line_segment does not pass the linestyle qualifier. In
such a case, it is preferable to pass all the qualifiers, e.g.,

20.3. qualifier exists 191

define line_segment (x0, yO, x1, y1)
{

moveto (x0, yO);

lineto (x1, y1 ;; __qualifiers());
}

Note the use of the double-semi colon in the 1ineto statement. This tells the parser that the
qualifiers are specified by a structure-valued argument and not a set of name-value pairs.

See Also
20.1 (qualifier), 20.3 (qualifier _exists)

20.3 qualifier exists

Synopsis
Check for the existence of a qualifier
Usage
Int_Type qualifier_exists (String_Type name)

Description

This function will return 1 if a qualifier of the specified name exists, or 0 otherwise.

See Also
20.1 (qualifier), 20.2 (_ _ qualifiers)

192 Chapter 20. Qualifier Functions

Chapter 21

Module Functions

21.1 get import module path

Synopsis
Get the search path for dynamically loadable objects

Usage

String_Type get_import_module_path ()

Description

The get_import_module_path may be used to get the search path for dynamically shared
objects. Such objects may be made accessible to the application via the import function.

See Also
21.2 (import), 21.3 (set _import _module path)

21.2 import

Synopsis

Dynamically link to a specified module

Usage

import (String Type module [, String Type namespace])

Description

The import function causes the run-time linker to dynamically link to the shared object
specified by the module parameter. It searches for the shared object as follows: First a search
is performed along all module paths specified by the application. Then a search is made
along the paths defined via the set_import_module_path function. If not found, a search is
performed along the paths given by the SLANG_MODULE_PATH environment variable. Finally, a
system dependent search is performed (e.g., using the LD_LIBRARY_PATH environment variable).

193

194 Chapter 21. Module Functions

The optional second parameter may be used to specify a namespace for the intrinsic functions
and variables of the module. If this parameter is not present, the intrinsic objects will be
placed into the active namespace, or global namespace if the active namespace is anonymous.

This function throws an ImportError if the specified module is not found.

Notes

The import function is not available on all systems.

See Also

21.3 (set_import module path), 25.21 (use namespace), 25.4 (current namespace), 25.8
(getenv), 19.5 (evalfile)

21.3 set import module path

Synopsis
Set the search path for dynamically loadable objects

Usage

set_import_module_path (String_Type path_list)

Description

The set_import_module_path may be used to set the search path for dynamically shared
objects. Such objects may be made accessible to the application via the import function.

The actual syntax for the specification of the set of paths will vary according to the operating
system. Under Unix, a colon character is used to separate paths in path_list. For win32
systems a semi-colon is used. The path_get_delimiter function may be used to get the value
of the delimiter.

See Also
21.2 (import), 21.1 (get _import module path), 17.6 (path get delimiter)

Chapter 22

Debugging Functions

22.1 _ bofeof info

Synopsis

Control the generation of function callback code

Usage
Int_Type _bofeof_info

Description

This value of this variable dictates whether or not the S-Lang interpreter will generate code
to call the beginning and end of function callback handlers. The value of this variable is local
to the compilation unit, but is inherited by other units loaded by the current unit.

If the value of this variable is 1 when a function is defined, then when the function is executed,

the callback handlers defined via _set_bof_handler and _set_eof_handler will be called.
See Also

22.6 (_set_bof handler), 22.8 (_set eof handler), 22.2 (_boseos_info)

22.2 boseos_info

Synopsis
Control the generation of BOS/EOS callback code

Usage

Int_Type _boseos_info

Description

This value of this variable dictates whether or not the S-Lang interpreter will generate code
to call the beginning and end of statement callback handlers. The value of this variable is local
to the compilation unit, but is inherited by other units loaded by the current unit.

The lower 8 bits of _boseos_info controls the generation of code for callbacks as follows:

195

196 Chapter 22. Debugging Functions

Value Description
0 No code for making callbacks will be produced.
1 Callback generation will take place for all non-branching

and looping statements.

2 Same as for 1 with the addition that code will also be
generated for branching statements (if, !if, loop, ...)

3 Same as 2, but also including break and continue
statements.

A non-branching statement is one that does not effect chain of execution. Branching statements
include all looping statements, conditional statement, break, continue, and return.

If bit 0x100 is set, callbacks will be generated for preprocessor statements.

Example

Consider the following:

_boseos_info = 1;
define foo (O
{
if (some_expression)
some_statement;

}
_boseos_info = 2;
define bar (O
{
if (some_expression)

some_statement;

The function foo will be compiled with code generated to call the BOS and EOS handlers
when some_statement is executed. The function bar will be compiled with code to call the
handlers for both some_expression and some_statement.

Notes

The sldb debugger and slsh’s stkcheck.sl make use of this facility.

See Also

22.7 (_set_bos_handler), 22.9 (_set eos_handler), 22.1 (_bofeof info)

22.3 clear error
Synopsis
Clear an error condition (deprecated)

Usage

_clear_error ()

22.4. get frame info 197

Description
This function has been deprecated. New code should make use of try-catch exception handling.

This function may be used in error-blocks to clear the error that triggered execution of the
error block. Execution resumes following the statement, in the scope of the error-block, that
triggered the error.

Example

Consider the following wrapper around the putenv function:

define try_putenv (name, value)
{
variable status;
ERROR_BLOCK
{
_clear_error ();
status = -1;
}
status = 0;
putenv (sprintf ("%s=Ys", name, value);
return status;

}

If putenv fails, it generates an error condition, which the try_putenv function catches and
clears. Thus try_putenv is a function that returns -1 upon failure and 0 upon success.

See Also
22.12 (_trace_function), 22.10 (_slangtrace), 22.11 (_traceback)

22.4 get frame info

Synopsis

Get information about a stack frame

Usage

Struct_Type _get_frame_info (Integer_Type depth)

Description

_get_frame_info returns a structure with information about the function call stack from of
depth depth. The structure contains the following fields:

file: The file that contains the code of the stack frame.

line: The line number the file the stack frame is in.

function: the name of the function containing the code of the stack
frame; it might be NULL if the code isn’t inside a function.

locals: Array of String Type containing the names of variables local
to the stack frame; it might be NULL if the stack frame doesn’t
belong to a function.

namespace: The namespace the code of this stack frame is in.

198 Chapter 22. Debugging Functions

See Also

22.5 (_get frame variable), 22.13 (_use_frame namespace)

22.5 get frame variable

Synopsis

Get the value of a variable local to a stack frame

Usage
Any_Type _get_frame_variable (Integer_Type depth, String Type name)

Description

This function returns value of the variable name in the stack frame at depth depth. This might
not only be a local variable but also variables from outer scopes, e.g., a variable private to the
namespace.

If no variable with this name is found an UndefinedNameError will be thrown. An
VariableUninitializedError will be generated if the variable has no value.

See Also

22.4 (_get frame info), 22.13 (_use_frame namespace)

22.6 set bof handler

Synopsis
Set the beginning of function callback handler

Usage
_set_bof_handler (Ref_Type func)

Description

This function is used to set the function to be called prior to the execution of the body S-
Lang function but after its arguments have been evaluated, provided that function was defined
with _bofeof_info set appropriately. The callback function must be defined to take a single
parameter representing the name of the function and must return nothing.

Example
private define bof_handler (fun)
{
() = fputs ("About to execute $fun"$, stdout);
}
_set_bos_handler (&bof_handler);
See Also

22.8 (_set_eof handler), 22.2 (_boseos_info), 22.7 (_set_bos _handler)

22.7. set bos handler 199

22.7 set bos handler

Synopsis
Set, the beginning of statement callback handler

Usage
_set_bos_handler (Ref_Type func)

Description

This function is used to set the function to be called prior to the beginning of a statement.
The function will be passed two parameters: the name of the file and the line number of the
statement to be executed. It should return nothing.

Example
private define bos_handler (file, line)
{
() = fputs ("About to execute $file:$line\n"$, stdout);
}
_set_bos_handler (&bos_handler);
Notes

The beginning and end of statement handlers will be called for statements in a file only if that
file was compiled with the variable _boseos_info set to a non-zero value.

See Also
22.9 (_set_eos_handler), 22.2 (_boseos_info), 22.1 (_bofeof info)

22.8 set eof handler

Synopsis
Set, the beginning of function callback handler

Usage
_set_eof_handler (Ref_Type func)

Description

This function is used to set the function to be called at the end of execution of a S-Lang
function, provided that function was compiled with _bofeof_info set accordingly.

The callback function will be passed no parameters and it must return nothing.
Example

private define eof_handler ()
{
() = fputs ("Done executing the function\n", stdout);

}
_set_eof_handler (&eof_handler);

200 Chapter 22. Debugging Functions

See Also
22.6 (_set_bof handler), 22.1 (_bofeof info), 22.2 (_boseos_ info)

22.9 set eos_ handler

Synopsis

Set the end of statement callback handler
Usage

_set_eos_handler (Ref_Type func)

Description

This function is used to set the function to be called at the end of a statement. The function
will be passed no parameters and it should return nothing.

Example
private define eos_handler ()
{
() = fputs ("Done executing the statement\n", stdout);
}
_set_eos_handler (&eos_handler);
Notes

The beginning and end of statement handlers will be called for statements in a file only if that
file was compiled with the variable _boseos_info set to a non-zero value.

See Also
22.7 (_set_bos_handler), 22.2 (_boseos_info), 22.1 (_bofeof info)

22.10 _ slangtrace

Synopsis

Turn function tracing on or off

Usage

Integer_Type _slangtrace

Description

The _slangtrace variable is a debugging aid that when set to a non-zero value enables tracing
when function declared by _trace_function is entered. If the value is greater than zero, both
intrinsic and user defined functions will get traced. However, if set to a value less than zero,
intrinsic functions will not get traced.

See Also
22.12 (_trace_function), 22.11 (_traceback), 23.7 (_print_stack)

22.11. _ traceback 201

22.11 _ traceback

Synopsis

Generate a traceback upon error

Usage

Integer_Type _traceback

Description
_traceback is an intrinsic integer variable whose bitmapped value controls the generation of
the call-stack traceback upon error. When set to 0, no traceback will be generated. Otherwise
its value is the bitwise-or of the following integers:

1 Create a full traceback
2 Omit local variable information
4 Generate just one line of traceback

The default value of this variable is 4.

Notes

Running slsh with the -g option causes this variable to be set to 1.

See Also
22.2 (_boseos_ info)

22.12 _ trace_function

Synopsis

Set the function to trace
Usage
_trace_function (String Type f)

Description

_trace_function declares that the S-Lang function with name f is to be traced when it is
called. Calling _trace_function does not in itself turn tracing on. Tracing is turned on only

when the variable _slangtrace is non-zero.

See Also
22.10 (_slangtrace), 22.11 (_traceback)

22.13 _use_ frame namespace

Synopsis

Selects the namespace of a stack frame

202 Chapter 22. Debugging Functions

Usage
_use_frame_namespace (Integer_Type depth)

Description

This function sets the current namespace to the one belonging to the call stack frame at depth
depth.

See Also
22.4 (_get frame info), 22.5 (_get frame variable)

Chapter 23

Stack Functions

23.1 dup

Synopsis

Duplicate the value at the top of the stack
Usage

dup O

Description

This function returns an exact duplicate of the object on top of the stack. For some objects
such as arrays or structures, it creates a new reference to the object. However, for simple
scalar S-Lang types such as strings, integers, and doubles, it creates a new copy of the object.

See Also
23.3 (pop), 12.17 (typeof)

23.2 exch

Synopsis

Exchange two items on the stack

Usage
exch ()

Description

The exch swaps the two top items on the stack.

See Also
23.3 (pop), 23.11 (_stk reverse), 23.12 (_stk_roll)

203

204 Chapter 23. Stack Functions

23.3 pop

Synopsis

Discard an item from the stack
Usage
pop O

Description

The pop function removes the top item from the stack.

See Also
23.6 (_pop_n), 23.4 (__pop_args)

23.4 _ pop_args

Synopsis

Remove n function arguments from the stack

Usage

args = __pop_args(Integer_Type n)

Description

This function, together with the companion function __push_args, is useful for creating a
function that takes a variable number of arguments, as well as passing the arguments of one
function to another function.

__pop_args removes the specified number of values from the stack and returns them as an
array of structures of the corresponding length. Each structure in the array consists of a single
field called value, which represents the value of the argument.

Example

Consider the following function. It prints all its arguments to stdout separated by spaces:

define print_args ()
{
variable i;

variable args = __pop_args (_NARGS);

for (i = 0; i < _NARGS; i++)
{

)

@)

fputs (string (args[i].value), stdout);
fputs (" ", stdout);

0)
0)

fputs ("\n", stdout);
fflush (stdout);

23.5. pop list 205

Now consider the problem of defining a function called ones that returns a multi-dimensional
array with all the elements set to 1. For example, ones(10) should return a 1-d array of 10
ones, whereas ones (10,20) should return a 10x20 array.

define ones ()

{
'if (_NARGS) return 1;

variable a;

a = __pop_args (_NARGS);
return @Array_Type (Integer_Type, [__push_args (a)]) + 1;
}

Here, __push_args was used to push the arguments passed to the ones function onto the stack
to be used when dereferencing Array_Type.

Notes

This function has been superseded by the __pop_list function, which returns the objects as
a list instead of an array of structures.

See Also
23.8 (__push_args), 23.5 (__pop_list), 23.9 (__push_list), 12.17 (typeof), 23.6 (_pop_n)

23.5 _ pop list

Synopsis

Convert items on the stack to a List_Type
Usage

List_Type = __pop_list (Int_Type n)

Description

This function removes a specified number of items from the stack and converts returns them
in the form of a list.

Example
define print_args ()
{
variable list = __pop_list (_NARGS);
variable i;
_for i (0, length(list)-1, 1)
{
vmessage ("argl[%d]: %S", i, 1list[i]);
}
}
See Also

23.9 (__push_list)

206 Chapter 23. Stack Functions

23.6 _pop n

Synopsis

Remove objects from the stack
Usage

_pop_n (Integer_Type n);
Description

The _pop_n function removes the specified number of objects from the top of the stack.

See Also
23.10 (_stkdepth), 23.3 (pop)

23.7 _ print_stack

Synopsis
Print the values on the stack.
Usage

_print_stack ()

Description

This function dumps out what is currently on the S-Lang stack. It does not alter the stack
and it is usually used for debugging purposes.

See Also
23.10 (_stkdepth), 12.12 (string), 10.5 (message)

23.8 _ push args

Synopsis

Move n function arguments onto the stack
Usage

__push_args (Struct_Type args);

Description

This function together with the companion function __pop_args is useful for the creation of
functions that take a variable number of arguments. See the description of __pop_args for
more information.

Notes
This function has been superseded by the __push_list function.

See Also
23.4 (__pop_args), 23.9 (__push_list), 23.5 (__pop_list), 12.17 (typeof), 23.6 (_pop_n)

23.9. push list 207

23.9 _ push_ list

Synopsis
Push the elements of a list to the stack
Usage
__push_list (List_Type list)
Description
This function pushes the elements of a list to the stack.

Example

private define list_to_array (list)
{
return [__push_list (list)];

See Also
23.5 (__pop list)

23.10 _ stkdepth

Usage

Get the number of objects currently on the stack
Synopsis

Integer Type _stkdepth ()
Description

The _stkdepth function returns number of items on the stack.

See Also
23.7 (_print_stack), 23.11 (_stk_reverse), 23.12 (_stk roll)

23.11 stk reverse

Synopsis

Reverse the order of the objects on the stack
Usage

_stk_reverse (Integer_Type n)

Description

The _stk_reverse function reverses the order of the top n items on the stack.

See Also
23.10 (_stkdepth), 23.12 (_stk_roll)

208 Chapter 23. Stack Functions

23.12 stk roll

Synopsis

Roll items on the stack

Usage
_stk_roll (Integer_Type n)

Description

This function may be used to alter the arrangement of objects on the stack. Specifically, if
the integer n is positive, the top n items on the stack are rotated up. If n is negative, the top
abs(n) items on the stack are rotated down.
Example
If the stack looks like:
item-0
item-1

item-2

item-3
where item-0 is at the top of the stack, then _stk_rol1(-3) will change the stack to:

item-2
item-0
item-1
item-3

Notes

This function only has an effect if abs(n) > 1.

See Also
23.10 (_stkdepth), 23.11 (_stk reverse), 23.6 (_pop_n), 23.7 (_print_ stack)

Chapter 24

Functions that deal with the S-Lang
readline interface

24.1 rline_bolp

Synopsis
Test of the editing point is at the beginning of the line
Usage
Int_Type rline_bolp()
Description
The rline_bolp function returns a non-zero value if the current editing position is at the
beginning of the line.
Notes

This function is part of the S-Lang readline interface.

See Also
24.4 (rline_eolp), 24.9 (rline_get point), 24.8 (rline_get line)

24.2 rline_ call

Synopsis

Invoke an internal readline function
Usage

rline_call (String_Type func)

Description

Not all of the readline functions are available directly from the S-Lang interpreter. For
example, the "deleol" function, which deletes through the end of the line may be executed

using

209

210 Chapter 24. Functions that deal with the S-Lang readline interface

rline_call("deleol");

See the documentation for the rline_setkey function for a list of internal functions that may
be invoked by rline_call.

Notes
This function is part of the S-Lang readline interface.

See Also
24.12 (rline_setkey), 24.3 (rline_del), 24.11 (rline_ins)

24.3 rline del

Synopsis

Delete a specified number of characters at the current position
Usage

rline_del(Int_Type n)
Description

This function delete a specified number of characters at the current editing position. If the
number n is less than zero, then the previous n characters will be deleted. Otherwise, the next
n characters will be deleted.

Notes

This function is part of the S-Lang readline interface.

See Also
24.11 (rline_ins), 24.12 (rline_setkey)

24.4 rline eolp

Synopsis

Test of the editing point is at the end of the line
Usage

Int_Type rline_eolp()

Description

The rline_bolp function returns a non-zero value if the current editing position is at the end
of the line.

Notes

This function is part of the S-Lang readline interface.

See Also
24.1 (rline_bolp), 24.9 (rline_get point), 24.8 (rline_get line)

24.5. rline getkey 211

24.5 rline getkey

Synopsis

Obtain the next byte in the readline input stream
Usage

Int_Type rline_getkey ()

Description

This function returns the next byte in the readline input stream. If no byte is available, the
function will wait until one is.

Notes

This function is part of the S-Lang readline interface.

See Also
24.10 (rline_input_pending), 24.12 (rline _setkey)

24.6 rline get edit width

Synopsis

Get the width of the readline edit window
Usage

Int_Type rline_get_edit_width ()
Description

This function returns the width of the edit window. For slsh, this number corresponds to the
width of the terminal window.

Notes

This function is part of the S-Lang readline interface.

See Also
24.11 (rline_ins)

24.7 rline get history
Synopsis

Retrieve the readline history
Usage

Array_Type rline_get_history ()
Description

This function returns the readline edit history as an array of strings.

212 Chapter 24. Functions that deal with the S-Lang readline interface

Notes

This function is part of the S-Lang readline interface.

See Also

24.15 (rline_set_line)

24.8 rline get line

Synopsis

Get a copy of the line being edited

Usage

String_Type rline_get_line ()

Description

This function returns the current edit line.

Notes

This function is part of the S-Lang readline interface.

See Also

24.15 (rline_set_line), 24.7 (rline_get history)

24.9 rline get point

Synopsis
Get the current editing position

Usage

Int_Type rline_get_point ()

Description

The rline_get_point function returns the byte-offset of the current editing position.

Notes

This function is part of the S-Lang readline interface.

See Also

24.17 (rline_set_point)

24.10. rline input pending 213

24.10 rline input pending

Synopsis
Test to see if readline input is available for reading
Usage

Int_Type rline_input_pending (Int_Type tsecs)

Description

This function returns a non-zero value if readline input is available to be read. If none is
immediately available, it will wait for up to tsecs tenths of a second for input before returning.

Notes

This function is part of the S-Lang readline interface.

See Also
24.5 (rline_ getkey)

24.11 rline ins
Synopsis
Insert a string at the current editing point

Usage

rline_ins (String_Type text)

Description

This function inserts the specified string into the line being edited.

Notes

This function is part of the S-Lang readline interface.

See Also
24.15 (rline_set_line), 24.3 (rline_del)

24.12 rline setkey
Synopsis
Bind a key in the readline keymap to a function

Usage

rline_setkey (func, keyseq)

214 Chapter 24. Functions that deal with the S-Lang readline interface

Description

The rline_setkey function binds the function func to the specified key sequence keyseq.
The value of func may be either a reference to a S-Lang function, or a string giving the name

of an internal readline function.

Functions that are internal to the readline interface include:

Notes

bdel Delete the previous character

bol Move to the beginning of the line

complete The command line completion function

del Delete the character at the current position
delbol Delete to the beginning of the line

deleol Delete through the end of the line

down Goto the next line in the history

enter Return to the caller of the readline function
eol Move to the end of the line

kbd_quit Abort editing of the current line

left Move left one character

quoted_insert
redraw

right
self_insert
trim

up

Insert the next byte into the line

Redraw the line

Move right one character

Insert the byte that invoked the function
Remove whitespace about the current position

Goto the previous line in the history

This function is part of the S-Lang readline interface.

See Also
24.18 (rline_ unsetkey)

24.13 rline set completion callback

Synopsis

Set the function to be used for completion at the readline prompt

Usage

rline_set_completion_callback (Ref_Type func)

Description

This function sets the callback function to be used for completion at the readline prompt. The
callback function must be defined to accept two values, the first being a string containing the
text of the line being edited, and an integer giving the position of the byte-offset into the string
where completion was requested.

The callback function must return two values: an array giving the list of possible completion
strings, and an integer giving the byte offset into the string of the start of the text to be
completed.

24.14. rline set history 215

Example

See completion-callback function defined in the slsh library file rline/complete.sl.

Notes

This function is part of the S-Lang readline interface.

See Also

24.16 (rline_set list completions callback)

24.14 rline set history

Synopsis
Replace the current history list with a new one
Usage

rline_set_history (Array_Type lines)

Description

The rline_set_history function replaces the current history by the specified array of strings.

Notes

This function is part of the S-Lang readline interface.

See Also
24.7 (rline_get history)

24.15 rline set line

Synopsis

Replace the current line with a new one
Usage

rline_set_line (String Type line)

Description

The rline_set_line function replaces the line being edited by the specified one.

Notes

This function is part of the S-Lang readline interface.

See Also
24.8 (rline_get line)

216 Chapter 24. Functions that deal with the S-Lang readline interface

24.16 rline set list completions callback

Synopsis

Set a callback function to display the list of completions
Usage
rline_set_list_completions_callback (Ref_Type func)

Description

This function sets the S-Lang function that is to be used to display the list of possible
completions for current word at the readline prompt. The callback function must be defined
to accept a single parameter representing an array of completion strings.

Example

This callback function writes the completions using the message functions:

private define display_completions (strings)

{
variable str;
vmessage ("There are %d completions:\n", length(strings));
foreach str (strings) vmessage ("/s\n", str);

}

rline_set_list_completions_callback (&display_completions);

See Also

24.13 (rline_set completion callback)

24.17 rline set point

Synopsis

Move the current editing position to another
Usage

rline_set_point (Int_Type ofs)

Description

The rline_set_point function sets the editing point to the specified byte-offset from the
beginning of the line.

Notes

This function is part of the S-Lang readline interface.

See Also

24.9 (rline_get point)

24.18. rline unsetkey 217

24.18 rline unsetkey

Synopsis

Unset a key binding from the readline keymap
Usage

rline_unsetkey (String_Type keyseq)
Description

The rline_unsetkey function unbinds the specified key sequence from the readline keymap.

Notes

This function is part of the S-Lang readline interface.

See Also
24.12 (rline_setkey)

218 Chapter 24. Functions that deal with the S-Lang readline interface

Chapter 25

Miscellaneous Functions

25.1 _ auto_declare

Synopsis

Set automatic variable declaration mode

Usage

Integer_Type _auto_declare

Description

The _auto_declare variable may be used to have undefined variable implicitly declared. If
set to zero, any variable must be declared with a variable declaration before it can be used.
If set to one, then any undeclared variable will be declared as a static variable.

The _auto_declare variable is local to each compilation unit and setting its value in one unit
has no effect upon its value in other units. The value of this variable has no effect upon the
variables in a function.

Example

The following code will not compile if X not been declared:

X =1;

However,
_auto_declare = 1; % declare variables as static.
X =1;

is equivalent to
static variable X = 1;

Notes

This variable should be used sparingly and is intended primarily for interactive applications
where one types S-Lang commands at a prompt.

219

220 Chapter 25. Miscellaneous Functions

25.2 _class_id

Synopsis
Return the class-id of a specified type

Usage

Int_Type __class_id (DataType_Type type)

Description

This function returns the internal class-id of a specified data type.

See Also
12.17 (typeof), 12.16 (_typeof), 25.3 (__class_type), 25.5 (__datatype)

25.3 _ class_type

Synopsis
Return the class-type of a specified type

Usage
Int_Type __class_type (DataType_Type type))

Description

Internally S-Lang objects are classified according to four types: scalar, vector, pointer, and
memory managed types. For example, an integer is implemented as a scalar, a complex number
as a vector, and a string is represented as a pointer. The __class_type function returns an
integer representing the class-type associated with the specified data type. Specifically, it

returns:
0 memory-managed
1 scalar
2 vector
3 pointer
See Also

12.17 (typeof), 12.16 (_typeof), 25.2 (__class_id), 25.5 (__datatype)

25.4 current namespace
Synopsis
Get the name of the current namespace

Usage

String Type current_namespace ()

25.5. _ datatype 221

Description
The current_namespace function returns the name of the static namespace associated with
the compilation unit. If there is no such namespace associated with the compilation unit, then
the empty string "" will be returned.

See Also
25.10 (implements), 25.21 (use_namespace), 21.2 (import), 19.5 (evalfile)

25.5 _ datatype

Synopsis
Get the DataType Type for a specified internal class-id

Usage

DataType_Type __datatype (Int_Type id)

Description
This function is the inverse of _ class_type in the sense that it returns the DataType_Type
for the specified class-id. If no such class exists, the function will return NULL.

Notes

One should not expect distinct interpreter instances to always return the same value for a
dynamically assigned class-id such as one defined by a module or one stemming from a typedef
statement.

See Also
25.2 (__class_id), 25.3 (__class_type), 12.17 (typeof)

25.6 eqs

Synopsis
Test for equality of two objects

Usage
Int_Type _eqgs (a, b)

Description

This function tests its two arguments for equality and returns 1 if they are equal or 0 otherwise.
What it means to be equal depends upon the data types of the objects being compared. If
the types are numeric, they are regarded as equal if their numerical values are equal. If they
are arrays, then they are equal if they have the same shape with equal elements. If they are
structures, then they are equal if they contain identical fields, and the corresponding values

are equal.

Example

222 Chapter 25. Miscellaneous Functions

_egs (1, 1) ===> 1
_egs (1, 1.0) ===> 1
_egs ("a", 1) ===> (

eqs ([1,2], [1.0,2.0]) ===>1

Notes

For testing sameness, use __is_same.

See Also
12.17 (typeof), 25.14 (__is_same), 25.9 (__get reference), 25.11 (__is_callable)

25.7 get environ

Synopsis

Get all environment variables

Usage

String Typel] = get_environ()

Description

The get_environ function returns an array of strings representing the environmen variables
defined for the current process. Each element of the array will be of the form NAME=VALUE.

This function will return NULL if the system does not support this feature.

See Also
25.8 (getenv), 25.15 (putenv), 8.9 (is_ defined)

25.8 getenv

Synopsis

Get the value of an environment variable

Usage
String Type getenv(String Type var)

Description

The getenv function returns a string that represents the value of an environment variable var.
It will return NULL if there is no environment variable whose name is given by var.

Example

if (NULL != getenv ("USE_COLOR"))
{
set_color ("mormal", "white", "blue");
set_color ("status", "black", "gray");
USE_ANSI_COLORS = 1;
}

25.9. get reference 223

See Also
25.7 (get__environ), 25.15 (putenv), 4.24 (strlen), 8.9 (is_ defined)

25.9 get reference

Synopsis
Get a reference to a global object
Usage
Ref _Type __get_reference (String_Type nm)

Description

This function returns a reference to a global variable or function whose name is specified by
nm. If no such object exists, it returns NULL, otherwise it returns a reference.

Example

Consider the function:

define runhooks (hook)

{
variable f;
f = __get_reference (hook);
if (f != NULL)
ef ();
}

This function could be called from another S-Lang function to allow customization of that
function, e.g., if the function represents a jed editor mode, the hook could be called to setup
keybindings for the mode.

See Also

8.9 (is_defined), 12.17 (typeof), 19.4 (eval), 19.2 (autoload), 8.10 (_ _is_initialized), 25.20
(_ _uninitialize)

25.10 implements

Synopsis

Create a new static namespace

Usage

implements (String_Type name)

Description

The implements function may be used to create a new static namespace and have it associated
with the current compilation unit. If a namespace with the specified name already exists, a

NamespaceError exception will be thrown.

224 Chapter 25. Miscellaneous Functions

In addition to creating a new static namespace and associating it with the compilation unit,
the function will also create a new private namespace. As a result, any symbols in the previous
private namespace will be no longer be accessible. For this reason, it is recommended that this
function should be used before any private symbols have been created.

Example
Suppose that some file t.sl contains:
implements ("My");
define message (x)
{
Global->message ("My’s message: $x"$);

}

message ("hello");

will produce "My’s message: hello". This message function may be accessed from outside
the namespace via:

My->message ("hi");

Notes

Since message is an intrinsic function, it is public and may not be redefined in the public

namespace.
The implements function should rarely be used. It is preferable to allow a static namespace
to be associated with a compilation unit using, e.g., evalfile.

See Also

25.21 (use_namespace), 25.4 (current_namespace), 21.2 (import)

25.11 _is_ callable

Synopsis

Determine whether or not an object is callable
Usage

Int_Type __is_callable (obj)

Description

This function may be used to determine if an object is callable by dereferencing the object. It
returns 1 if the argument is callable, or zero otherwise.

Example
__is_callable (7) ==> 0
__is_callable (&sin) ==> 1
a = [&sin];
__is_callable (al0]) ==> 1
__is_callable (&al[0]) ==> 0
See Also

25.13 (___is_numeric), 8.9 (is_ defined)

25.12. _is_datatype numeric 225

25.12 _is_datatype numeric

Synopsis

Determine whether or not a type is a numeric type

Usage

Int_Type __is_datatype_numeric (DataType_Type type)

Description

This function may be used to determine if the specified datatype represents a numeric type.
It returns O if the datatype does not represents a numeric type; otherwise it returns 1 for an
integer type, 2 for a floating point type, and 3 for a complex type.

See Also

12.17 (typeof), 25.13 (_ _is_numeric), 25.11 (_ _is_ callable)

25.13 _is__numeric

Synopsis

Determine whether or not an object is a numeric type

Usage

Int_Type __is_numeric (obj)

Description

This function may be used to determine if an object represents a numeric type. It returns 0 if
the argument is non-numeric, 1 if it is an integer, 2 if a floating point number, and 3 if it is
complex. If the argument is an array, then the array type will be used for the test.

Example
__is_numeric ("foo"); ==> 0
__is_numeric ("0"); ==> 0
__is_numeric (0); ==> 1
__is_numeric (PI); ==> 92
__is_numeric (2j); ==> 3
__is_numeric ([1,2]); ==>1
__is_numeric ({1,2}); ==>0

See Also

12.17 (typeof), 25.12 (__is_datatype numeric)

25.14 _is_same

Synopsis

Test for sameness of two objects

226 Chapter 25. Miscellaneous Functions

Usage

Int_Type __is_same (a, b)

Description

This function tests its two arguments for sameness and returns 1 if they are the same, or 0
otherwise. To be the same, the data type of the arguments must match and the values of the
objects must reference the same underlying object.

Example
__is_same (1, 1) ===> 1
__is_same (1, 1.0) ===> ()
__is_same ("a", 1) ===> 0
__is_same ([1,2]1, [1,2]) ===> 0
Notes

For testing equality, use _egs.

See Also
12.17 (typeof), 25.6 (_eqs), 25.9 (_ _get_reference), 25.11 (__is_ callable)

25.15 putenv

Synopsis

Add or change an environment variable
Usage

putenv (String_Type s)
Description

This functions adds string s to the environment. Typically, s should of the form "name=value".
The function throws an 0SError upon failure.

Notes

This function may not be available on all systems.

See Also
25.8 (getenv), 4.10 (sprintf)

25.16 set argc argv
Synopsis

Set the argument list
Usage

__set_argc_argv (Array_Type a)
Description

This function sets the __argc and __argv intrinsic variables.

25.17. _slang install prefix 227

25.17 slang install prefix

Synopsis

S-Lang’s installation prefix

Usage

String_Type _slang_install_prefix

Description

The value of this variable is set at the S-Lang library’s compilation time. On Unix systems, the
value corresponds to the value of the prefix variable in the Makefile. For normal installations,
the library itself will be located in the 1ib subdirectory of the prefix directory.

Notes

The value of this variable may or may not have anything to do with where the slang library is
located. As such, it should be regarded as a hint. A standard installation will have the slsh
library files located in the share/slsh subdirectory of the installation prefix.

See Also
8.13 (_slang doc_dir)

25.18 slang utf8 ok

Synopsis

Test if the interpreter running in UTF-8 mode

Usage

Int_Type _slang_utf8_ok

Description

If the value of this variable is non-zero, then the interpreter is running in UTF-8 mode. In
this mode, characters in strings are interpreted as variable length byte sequences according to
the semantics of the UTF-8 encoding.

Notes

When running in UTF-8 mode, one must be careful not to confuse a character with a byte.
For example, in this mode the strlen function returns the number of characters in a string
which may be different than the number of bytes. The latter information may be obtained by
the strbytelen function.

See Also
4.12 (strbytelen), 4.24 (strlen), 4.15 (strcharlen)

228 Chapter 25. Miscellaneous Functions

25.19 tmp

Synopsis

Returns the value of a variable and uninitialize the variable
Usage

—_tmp (x)
Description

The __tmp function takes a single argument, a variable, returns the value of the variable,
and then undefines the variable. The purpose of this pseudo-function is to free any memory
associated with a variable if that variable is going to be re-assigned.

Example

x = 3;
__tmp(x) ;

will result in ‘y’ having a value of ‘3’ and ‘x’ will be undefined.

Notes

This function is a pseudo-function because a syntax error results if used like
__tmp(sin(x));

See Also
25.20 (__ uninitialize), 8.10 (__is_initialized)

25.20 __uninitialize

Synopsis
Uninitialize a variable
Usage

__uninitialize (Ref_Type x)

Description
The __uninitialize function may be used to uninitialize the variable referenced by the pa-
rameter x.

Example

The following two lines are equivalent:

O = __tmp(2);
__uninitialize (&z);

See Also
25.19 (__tmp), 8.10 (__is_initialized)

25.21. use namespace 229

25.21 wuse_ namespace

Synopsis
Change to another namespace

Usage

use_namespace (String_Type name)

Description

The use_namespace function changes the current static namespace to the one specified by the
parameter. If the specified namespace does not exist, a NamespaceError exception will be
generated.

See Also
25.10 (implements), 25.4 (current_namespace), 21.2 (import)

	Data Types
	Assoc_Type
	File_Type
	List_Type
	String_Type
	Struct_Type

	Array Functions
	all
	any
	array_info
	array_map
	array_reverse
	array_shape
	array_sort
	array_swap
	cumsum
	get_default_sort_method
	init_char_array
	_isnull
	length
	max
	maxabs
	min
	minabs
	_reshape
	reshape
	set_default_sort_method
	sum
	sumsq
	transpose
	where
	wherediff
	wherefirst
	wherefirstmax
	wherefirstmin
	wherelast
	wherelastmax
	wherelastmin
	wherenot

	Associative Array Functions
	assoc_delete_key
	assoc_get_keys
	assoc_get_values
	assoc_key_exists

	Functions that Operate on Strings
	count_char_occurrences
	create_delimited_string
	extract_element
	glob_to_regexp
	is_list_element
	is_substr
	make_printable_string
	Sprintf
	strbskipchar
	sprintf
	sscanf
	strbytelen
	strbytesub
	strcat
	strcharlen
	strchop
	strchopr
	strcmp
	strcompress
	string_match
	string_match_nth
	string_matches
	strjoin
	strlen
	strlow
	strnbytecmp
	strncharcmp
	strncmp
	strreplace
	strskipbytes
	strskipchar
	strsub
	strtok
	strtrans
	strtrim
	strtrim_beg
	strtrim_end
	strup
	str_delete_chars
	str_quote_string
	str_replace
	str_uncomment_string
	substr
	substrbytes

	Functions that Operate on Binary Strings
	array_to_bstring
	bstring_to_array
	bstrcat
	bstrjoin
	bstrlen
	count_byte_occurrences
	is_substrbytes
	pack
	pad_pack_format
	sizeof_pack
	unpack

	Functions that Manipulate Structures
	__add_binary
	__add_string
	__add_typecast
	__add_unary
	get_struct_field
	get_struct_field_names
	_is_struct_type
	is_struct_type
	_push_struct_field_values
	set_struct_field
	set_struct_fields

	Functions that Create and Manipulate Lists
	list_append
	list_concat
	list_delete
	list_insert
	list_join
	list_new
	list_pop
	list_reverse
	list_to_array

	Informational Functions
	add_doc_file
	_apropos
	__FILE__
	_function_name
	__get_defined_symbols
	get_doc_files
	get_doc_string_from_file
	_get_namespaces
	is_defined
	__is_initialized
	_NARGS
	set_doc_files
	_slang_doc_dir
	_slang_version
	_slang_version_string

	Mathematical Functions
	abs
	acos
	acosh
	asin
	asinh
	atan
	atan2
	atanh
	ceil
	Conj
	cos
	cosh
	_diff
	exp
	expm1
	feqs
	fgteqs
	floor
	flteqs
	fneqs
	get_float_format
	hypot
	Imag
	isinf
	isnan
	_isneg
	_isnonneg
	_ispos
	log
	log10
	log1p
	_max
	_min
	mul2
	nint
	polynom
	Real
	round
	set_float_format
	sign
	sin
	sincos
	sinh
	sqr
	sqrt
	tan
	tanh

	Message and Error Functions
	errno
	errno_string
	error
	__get_exception_info
	message
	new_exception
	usage
	verror
	vmessage

	Time and Date Functions
	ctime
	gmtime
	localtime
	mktime
	strftime
	_tic
	tic
	_time
	time
	timegm
	times
	_toc
	toc

	Data-Type Conversion Functions
	atof
	atoi
	atol
	atoll
	char
	define_case
	double
	int
	integer
	isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit
	_slang_guess_type
	string
	tolower
	toupper
	typecast
	_typeof
	typeof

	Stdio File I/O Functions
	clearerr
	fclose
	fdopen
	feof
	ferror
	fflush
	fgets
	fgetslines
	fopen
	fprintf
	fputs
	fputslines
	fread
	fread_bytes
	fseek
	ftell
	fwrite
	pclose
	popen
	printf
	setvbuf

	Low-level POSIX I/O functions
	close
	_close
	dup_fd
	dup2_fd
	_fileno
	fileno
	isatty
	lseek
	open
	read
	write

	Signal Functions
	alarm
	getitimer
	setitimer
	signal
	sigprocmask
	sigsuspend

	Directory Functions
	access
	chdir
	chmod
	chown
	getcwd
	hardlink
	lchown
	listdir
	lstat_file
	mkdir
	readlink
	remove
	rename
	rmdir
	stat_file
	stat_is
	stat_mode_to_string
	symlink
	utime

	Functions that Parse Filenames
	path_basename
	path_basename_sans_extname
	path_concat
	path_dirname
	path_extname
	path_get_delimiter
	path_is_absolute
	path_sans_extname

	System Call Functions
	getegid
	geteuid
	getgid
	getpgid
	getpgrp
	getpid
	getppid
	getpriority
	getrusage
	getsid
	getuid
	kill
	killpg
	mkfifo
	setgid
	setpgid
	setpriority
	setsid
	setuid
	sleep
	system
	system_intr
	umask
	uname

	Eval Functions
	_$
	autoload
	byte_compile_file
	eval
	evalfile
	get_slang_load_path
	set_slang_load_path

	Qualifier Functions
	qualifier
	__qualifiers
	qualifier_exists

	Module Functions
	get_import_module_path
	import
	set_import_module_path

	Debugging Functions
	_bofeof_info
	_boseos_info
	_clear_error
	_get_frame_info
	_get_frame_variable
	_set_bof_handler
	_set_bos_handler
	_set_eof_handler
	_set_eos_handler
	_slangtrace
	_traceback
	_trace_function
	_use_frame_namespace

	Stack Functions
	dup
	exch
	pop
	__pop_args
	__pop_list
	_pop_n
	_print_stack
	__push_args
	__push_list
	_stkdepth
	_stk_reverse
	_stk_roll

	Functions that deal with the S-Lang readline interface
	rline_bolp
	rline_call
	rline_del
	rline_eolp
	rline_getkey
	rline_get_edit_width
	rline_get_history
	rline_get_line
	rline_get_point
	rline_input_pending
	rline_ins
	rline_setkey
	rline_set_completion_callback
	rline_set_history
	rline_set_line
	rline_set_list_completions_callback
	rline_set_point
	rline_unsetkey

	Miscellaneous Functions
	_auto_declare
	__class_id
	__class_type
	current_namespace
	__datatype
	_eqs
	get_environ
	getenv
	__get_reference
	implements
	__is_callable
	__is_datatype_numeric
	__is_numeric
	__is_same
	putenv
	__set_argc_argv
	_slang_install_prefix
	_slang_utf8_ok
	__tmp
	__uninitialize
	use_namespace

